Published February 1, 2019 | Version v1
Journal article Open

Efficient reduction of PLI in ECG signal using new variable step size least mean fourth adaptive algorithm

Description

It is very important in remote cardiac diagnosis to extract pure ECG signal from the contaminated recordings of the signal. When recording the ECG signal in the laboratory, the signal is affected by numerous artifacts. Varies artifacts generally degrades the signal quality are PLI, EM, MA and EM. In addition to these, the channel noise also added when transmitting signal from remote location to diagnosis center for analyzing the signal. There are several approaches are used to reduce the noise present in the ECG signal. From the literature it is proven that compared to non adaptive filters, adaptive filters play vital role to trace the random changes in the corrupted signals. In this paper, we proposed efficient Variable step size leaky least mean fourth algorithm and its sign versions for reducing the complexity. These algorithms shows that it gives low steady state error due to least mean fourth and fast convergence rate that is it tracks the input signal quickly because of its variable step size is high at initial iterations of signal compared to the LMS algorithm. The performance of the algorithm is evaluated using SNR, frequency spectrum, MSE, misadjustment and convergence characteristics.

Files

34 8Oct18 27des17 10646 Gowri.docx edit mita.pdf

Files (1.0 MB)