L4B - Maximum tree height map for the Brazilian Amazon
Creators
- Gorgens, Eric Bastos1
- Nunes, Matheus Henrique2
- Jackson, Tobias3
- Coomes, David3
- Keller, Michael4
- Reis, Cristiano Rodrigues5
- Valbuena, Rubén6
- Rosette, Jacqueline7
- Almeida, Danilo Roberti Alves5
- Gimenez, Bruno8
- Cantinho, Roberta9
- Motta, Alline Zagnolli1
- Assis, Mauro10
- Pereira, Francisca Rocha de Souza10
- Spanner, Gustavo8
- Higuchi, Niro8
- Ometto, Jean Pierre10
- 1. Universidade Federal dos Vales do Jequitinhonha e Mucuri
- 2. University of Helsinki
- 3. University of Cambridge
- 4. United States Forest Service
- 5. Universidade de São Paulo
- 6. Bangor University
- 7. Swansea University
- 8. Instituto Nacional de Pesquisas da Amazônia
- 9. Universidade de Brasília
- 10. Instituto Nacional de Pesquisas Espaciais
Description
Maximum tree height distribution estimated by the Random Forest model based on the environmental variables. To explore the influence and importance of the environmental variables for development in tree height, we employed Random Forest modeling, which consists of generating a large number of regression trees, each constructed considering a random data subset. The regression trees are used to identify the best sequence to split the solution space to estimate the output. Were considered 18 environmental variables: (1) fraction of absorbed photosynthetically active radiation (FAPAR; in %); (2) elevation above sea level (Elevation; in m); (3) the component of the horizontal wind towards east, i.e. zonal velocity (u-speed ; in m s-1); (4) the component of the horizontal wind towards north, i.e. meridional velocity (v-speed ; in m s-1); (5) the number of days not affected by cloud cover (clear days; in days yr-1); (6) the number of days with precipitation above 20 mm (days > 20mm; in days yr-1 ); (7) the number of months with precipitation below 100 mm (months < 100mm; in months yr-1 ) ; (8) lightning frequency (flashes rate); (9) annual precipitation (in mm); (10) potential evapotranspiration (in mm); (11) coefficient of variation of precipitation (precipitation seasonality; in %); (12) amount of precipitation on the wettest month (precip. wettest; in mm); (13) amount of precipitation on the driest month (precip. driest; in mm); (14) mean annual temperature (in °C); (15) standard deviation of temperature (temp. seasonality; in °C); (16) annual maximum temperature (in °C); (17) soil clay content (in %); and (18) soil water content (in %).
Notes
Files
rfHeightRasterCor80v14042020.tif
Files
(71.1 MB)
Name | Size | Download all |
---|---|---|
md5:13a91d311687cf4881b1aa8c2f0ab32d
|
71.1 MB | Preview Download |
Additional details
Related works
- Is documented by
- Preprint: https://www.biorxiv.org/content/10.1101/2020.05.15.097683v2 (URL)
- Is referenced by
- Journal article: 10.1111/gcb.15423 (DOI)
Funding
- A 3D perspective on the effects of topography and wind on forest height and dynamics NE/S010750/1
- UK Research and Innovation
- Understanding mechanisms of habitat change in fragmented tropical forests for improving conservation 319905
- Academy of Finland