Published August 6, 2020 | Version v0.1.0
Software Open

Helixer: trained animal and plant models for cross species gene annotation

  • 1. Heinrich Heine University Düsseldorf
  • 2. RWTH Aachen University

Description

Trained models associated with the paper "Helixer: Cross-species Gene Annotation Of Large Eukaryotic Genomes Using Deep Learning" (under review), and the code base: https://github.com/weberlab-hhu/Helixer. All models for the final ensemble are included here.

In short: these models can be used to make base-pair wise gene annotation predictions (whether each base in the genome belongs to an intergenic, untranslated, coding, or intronic region). Validation efforts indicated that the animal models perform well for cross-species predictions within vertebrates, while the plant models perform well within Embryophyta.

model_info.csv contains some brief meta information and model performance on the validation set.

The best single animal model (if running one model and not an ensemble) is animals_a_e07.h5, while the best single plant model is plants_a_e10.h5.

Notes

See the github repository for the code and instructions necessary for usage

Files

model_info.csv

Files (1.0 GB)

Name Size Download all
md5:821ff9e92274f4b837531ca7947ca7a5
64.5 MB Download
md5:39087a0f90832e4dfebcba22bcdc5714
64.5 MB Download
md5:382e1be047724c86df88c3e85553cf87
64.5 MB Download
md5:ed883628a3937050a8b065cc4713eaea
64.5 MB Download
md5:fb70edc31ec17dc0289101c6e58ca76e
64.5 MB Download
md5:315966bb3234b28f801ff24a2105ee0a
64.5 MB Download
md5:a0b6f0d0a5a52b7f7cff777563772341
64.5 MB Download
md5:fff1bf46a031f9f95aebdc4f3add0d40
64.5 MB Download
md5:8f7891362926c3ba997a566d34178533
1.1 kB Preview Download
md5:4cbbbb18978b0629c7433e40f097b85f
64.5 MB Download
md5:712d4aabaa6c4d4aa9ffa5cc02ede330
64.5 MB Download
md5:55110fab9e9db4a71d350753607ab770
64.5 MB Download
md5:da975ded514d1655e42444dc8030e7eb
64.5 MB Download
md5:ba4036bad4f4e321688d384151a9280c
64.5 MB Download
md5:8ef216997ee08bda31e072b34fa0d959
64.5 MB Download
md5:6def137c166edc6412c31683e20f993d
64.5 MB Download
md5:9aee19fb776951776335980cd083752f
64.5 MB Download