Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published July 31, 2020 | Version v1
Journal article Open

Microhardness of fiberglass – reinforced photocomposite material under different conditions of light polimerization

  • 1. Donetsk National Medical University

Description

The aim: to study in laboratory conditions the microhardness of a glass-fiber-reinforced photocomposite under different modes of light exposure at different times.

Materials and methods. The microhardness of the everX Posterior, GC glass-fiber-reinforced photocomposite was investigated on 60 samples using a PMT-3 microhardness meter on three sample surfaces within 1 hour, 1 day and 7 days after polymerization. Samples of a cylindrical shape with a height of 3 mm of group 1 were irradiated with the light flux of a photopolymerizer in the "soft start" mode, samples of group 2 were polymerized with light of constant high intensity 1400 mW/cm2.

Research results. After 1 hour, the microhardness on the surface closest to the LED was 87.34±1.21 kgf/mm2 in samples of group 1, 102.0±0.94 kgf/mm2 (p<0.05) in group 2, and 70.98±1.23 kgf/mm2 (the lowest indicator) and 90.65±1.12 kgf/mm2 (p<0.05). After 1 day, on the nearest surface, the microhardness increased in the samples of group 1 to 97.03±1.25 kgf/mm2, group 2 – to 114.61±1.13 kgf/mm2 (p<0.05), on the most distant - up to 75.95±1.11 kgf/mm2 and 99.83±1.24 kgf/mm2 (p<0.05), respectively. At 7 days, the indicators on the first surface in group 1 were 104.64±1.23 kgf/mm2, in 2 – 123.35±1.15 kgf/mm2 (p<0.05), on the other surface – 80.25±1.48 kgf/mm2 and 107.53±0.92 kgf/mm2 (p<0.05). The growth of microhardness on these surfaces for the entire period was 16.5 % and 11.6 % in the samples of group 1, and 17.3 % and 15.7 % in group 2.

Conclusions. The light flux of constant high intensity provides statistically significantly (p <0.05) higher microhardness indices of the glass-fiber reinforced photocomposite on all surfaces of the samples than the light exposure in the “soft start” mode. In the direct restoration of teeth, it is necessary to reduce the thickness of the photocomposite layer for "soft start" polymerization

Files

Microhardness of fiberglass – reinforced photocomposite material under different conditions of light polimerization.pdf

Additional details

References

  • Borisenko, A. V., Nespryad'ko, V. P., Borisenko, D. A. (2015). Kompozitsionnye plombirovochnye i oblitsovochnye materialy. Kyiv: VSI «Meditsina», 320.
  • Adalaev, H. I. (2017). Zhidkotekuchie kompozitsionnye materialy svetovogo otverzhdeniya. Bulletin of Medical Internet Conferences, 7 (10), 1554–1555.
  • Gryuttsner, A. (2011). Tekuchiy kompozit SDR – umniy zamenitel' dentina. DentArt, 2, 45–52.
  • Wolff, D., Geiger, S., Ding, P., Staehle, H. J., Frese, C. (2012). Analysis of the interdiffusion of resin monomers into pre-polymerized fiber-reinforced composites. Dental Materials, 28 (5), 541–547. doi: https://doi.org/10.1016/j.dental.2011.12.001
  • Miletich, I. (2018). Sovremennye resheniya dlya pryamyh restavratsiy zubov distal'noy gruppy. Glavniy vrach Yuga Rossii, 61, 6–9.
  • Garoushi, S., Vallittu, P. K., Watts, D. C., Lassila, L. V. J. (2008). Effect of nanofiller fractions and temperature on polymerization shrinkage on glass fiber reinforced filling material. Dental Materials, 24 (5), 606–610. doi: https://doi.org/10.1016/j.dental.2007.06.020
  • EverX Posterior. Kompozyt dlia zamishchennia dentynu, pidsylenyi voloknom. Available at: https://kristar.ua/upload/iblock/c18/c185a519bff1c413136026feb1f1913d.pdf
  • Udod, O. A., Bekuzarova, K. I. (2018). Study of nanophotocomposite material microhardness under various hardening conditions. Bulletin of Problems Biology and Medicine, 4.3 (141), 260. doi: https://doi.org/10.29254/2077-4214-2017-4-3-141-260-263
  • Udod, O. A., Roman, O. B. (2020). Doslidzhennia hlybyny polimeryzatsiyi fotokompozytsiynykh materialiv. Mater. mizhnar. nauk.-prakt. konf. «Medychna nauka ta praktyka na suchasnomu istorychnomu etapi». Kyiv, 116–118.
  • GOST 9450-76. Izmerenie mikrotverdosti vdavlivaniem almaznyh nakonechnikov (1993). Moscow: Izd-vo standartov, 35.
  • Udod, O. A., Bakuzarova, H. I. (2018). Investigating the Intensity Dynamics of the Photopolymerizer Light Flux in Restorative Materials. Ukrainskyi zhurnal medytsyny, biolohiyi ta sportu, 3 (2), 171–174. doi: https://doi.org/10.26693/jmbs03.02.171
  • Maniuh, H. Yu., Maksymiv, O. O., Rozhko, V. I. (2012). A modern view of photocomposite filling materials and their features in case of restoring defects of the crown part of the teeth. Bukovynskyi medychnyi visnyk, 16 (1 (61)), 166–170.
  • Garoushi, S., Tanner, J., Vallittu, P., Lassila, L. (2012). Preliminary Clinical Evaluation of Short Fiber-Reinforced Composite Resin in Posterior Teeth: 12-Months Report. The Open Dentistry Journal, 6 (1), 41–45. doi: https://doi.org/10.2174/1874210601206010041