Dataset Open Access
Fran Casino;
Nikolaos Lykousas;
Ivan Homoliak;
Constantinos Patsakis;
Julio Hernandez-Castro
This repository contains a large dataset for the research of domain generation algorithms (DGAs) and machine learning. At the time of writing the dataset contains more than 90m of domains and more than 100 families.
The dataset consists of SLDs from DGAs and their extracted features. The main sources for the DGAs are the following:
When the samples were sparse, we used the reversed code to create new ones.
Moreover, it has SLDs from three adversarial DGAs (referred to deception, deception2 and khaos) DGAs and SLDs from the top 1m Alexa domains.
Features by the order they appear in the dataset
Name | Size | |
---|---|---|
dataset.7z
md5:27fbeca237b60fae65134f31025cd486 |
2.7 GB | Download |
Plohmann, Daniel, et al. "A comprehensive measurement study of domain generating malware." 25th USENIX Security Symposium (USENIX Security 16). 2016.
Spooren, Jan, et al. "Detection of algorithmically generated domain names used by botnets: a dual arms race." Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. 2019.
X. Yun, J. Huang, Y. Wang, T. Zang, Y. Zhou, and Y. Zhang, "Khaos: An adversarial neural network dga with high anti-detection ability", IEEE Transactions on Information Forensics and Security, vol. 15, pp.2225–2240, 2020.
All versions | This version | |
---|---|---|
Views | 208 | 208 |
Downloads | 45 | 45 |
Data volume | 121.5 GB | 121.5 GB |
Unique views | 189 | 189 |
Unique downloads | 22 | 22 |