Conference paper Open Access

A Lightweight Implementation of NTRU Prime for the Post-Quantum Internet of Things

Cheng, H.; Dinu, D.; Großschädl, P.; Rønne, P.; Ryan, P.

The dawning era of quantum computing has initiated various initiatives for the standardization of post-quantum cryptosystems with the goal of (eventually) replacing RSA and ECC. NTRU Prime is a variant of the classical NTRU cryptosystem that comes with a couple of tweaks to minimize the attack surface; most notably, it avoids rings with “worrisome” structure. This paper presents, to our knowledge, the first assembler-optimized implementation of Streamlined NTRU Prime for an 8-bit AVR microcontroller and shows that high-security latticebased cryptography is feasible for small IoT devices. An encapsulation operation using parameters for 128-bit post-quantum security requires 8.2 million clock cycles when executed on an 8-bit ATmega1284 microcontroller. The decapsulation is approximately twice as costly and has an execution time of 15.6 million cycles. We achieved this performance through (i) new low-level software optimization techniques to accelerate Karatsuba-based polynomial multiplication on the 8-bit AVR platform and (ii) an efficient implementation of the coefficient modular reduction written in assembly language. The execution time of encapsulation and decapsulation is independent of secret data, which makes our software resistant against timing attacks. Finally, we assess the performance one could theoretically gain by using a so-called product-form polynomial as part of the secret key and discuss potential security implications.

Files (388.8 kB)
Name Size
34-A-Lightweight-Implementation-of-NTRU-Prime-for-the-Post-quantum-Internet-of-Things.pdf
md5:420b2e56e618cf4ba1353fd8da8fc1cf
388.8 kB Download
106
34
views
downloads
All versions This version
Views 106106
Downloads 3434
Data volume 13.2 MB13.2 MB
Unique views 102102
Unique downloads 3333

Share

Cite as