Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published February 12, 2020 | Version v1
Journal article Open

TSPO imaging-guided characterization of the immunosuppressive myeloid tumor microenvironment in patients with malignant glioma

Description

Abstract

Background: Tumor-associated microglia and macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) are potent immunosuppressors in the glioma tumor microenvironment (TME). Their infiltration is associated with tumor grade, progression and therapy resistance. Specific tools for image-guided analysis of spatio-temporal changes in the immunosuppressive myeloid tumor compartments are missing. We aimed (i) to evaluate the role of [18F]DPA-714 (TSPO) PET-MRI in the assessment of the immunosuppressive TME in glioma patients and (ii) to cross-correlate imaging findings with in-depth immunophenotyping.

Methods: To characterize the glioma TME, a mixed collective of nine glioma patients underwent [18F]DPA-714-PET-MRI in addition to [18F]FET-PET-MRI. Image-guided biopsy samples were immuno-phenotyped by multiparametric flow cytometry and immunohistochemistry. In vitro autoradiography was performed for image validation and assessment of tracer binding specificity.

Results: We found a strong relationship (r = 0.84, p = 0.009) between the [18F]DPA-714 uptake and the number and activation level of glioma-associated myeloid cells (GAMs). TSPO expression was mainly restricted to HLA-DR+ activated GAMs, particularly to tumor-infiltrating HLA-DR+ MDSCs and TAMs. [18F]DPA-714-positive tissue volumes exceeded [18F]FET-positive volumes and showed a differential spatial distribution.

Conclusion: [18F]DPA-714-PET may be used to non-invasively image the glioma-associated immunosuppressive TME in vivo. This imaging paradigm may also help to characterize the heterogeneity of the glioma TME with respect to the degree of myeloid cell infiltration at various disease stages. [18F]DPA-714 may also facilitate the development of new image-guided therapies targeting the myeloid-derived TME.

Notes

This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675417 AND from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 831514. This Joint Undertaking received support from the European Union's Horizon 2020 research and innovation programme and EFPIA.

Files

Zinnhardt Müther Roll et al. 2020 Neuro Oncology AAM.pdf

Files (4.9 MB)

Additional details

Funding

PET3D – PET Imaging in Drug Design and Development 675417
European Commission
INMIND – Imaging of Neuroinflammation in Neurodegenerative Diseases 278850
European Commission
Immune-Image – Immune-Image: Specific Imaging of Immune Cell Dynamics Using Novel Tracer Strategies 831514
European Commission