Journal article Open Access

PaccMann: a web service for interpretable anticancer compound sensitivity prediction

Cadow, Joris; Born, Jannis; Manica, Matteo; Oskooei, Ali; Rodríguez Martínez, María

The identification of new targeted and personalized therapies for cancer requires the fast and accurate assessment of the drug efficacy of potential compounds against a particular biomolecular sample. It has been suggested that the integration of complementary sources of information might strengthen the accuracy of a drug efficacy prediction model. Here, we present a web-based platform for the Prediction of AntiCancer Compound sensitivity with Multimodal Attention-based Neural Networks (PaccMann). PaccMann is trained on public transcriptomic cell line profiles, compound structure information and drug sensitivity screenings, and outperforms state-of-the-art methods on anticancer drug sensitivity prediction. On the open-access web service (https://ibm.biz/paccmann-aas), users can select a known drug compound or design their own compound structure in an interactive editor, perform in-silico drug testing and investigate compound efficacy on publicly available or user-provided transcriptomic profiles. PaccMann leverages methods for model interpretability and outputs confidence scores as well as attention heatmaps that highlight the genes and chemical sub-structures that were more important to make a prediction, hence facilitating the understanding of the model’s decision making and the involved biochemical processes. We hope to serve the community with a toolbox for fast and efficient validation in drug repositioning or lead compound identification regimes.

Files (1.2 MB)
Name Size
gkaa327_.pdf
md5:34d47ade87f23a7935a5e0ed67080ad6
1.2 MB Download
18
18
views
downloads
Views 18
Downloads 18
Data volume 21.2 MB
Unique views 16
Unique downloads 17

Share

Cite as