Journal article Open Access

Micelle-directed chiral seeded growth on anisotropic gold nanocrystals

González-Rubio, G; Mosquera, J; Kumar, V; Pedrazo-Tardajos, A; Llombart, P; Solís, DM; Lobato, I; Noya, EG; Guerrero-Martínez, A; Taboada, JM; Obelleiro, F; MacDowell, LG; Bals, S; Liz-Marzán, LM.

Surfactant-assisted seeded growth of metal nanoparticles (NPs) can be engineered to produce anisotropic gold nanocrystals with high chiroptical activity through the templating effect of chiral micelles formed in the presence of dissymmetric cosurfactants. Mixed micelles adsorb on gold nanorods, forming quasihelical patterns that direct seeded growth into NPs with pronounced morphological and optical handedness. Sharp chiral wrinkles lead to chiral plasmon modes with high dissymmetry factors (~0.20). Through variation of the dimensions of chiral wrinkles, the chiroptical properties can be tuned within the visible and near-infrared electromagnetic spectrum. The micelle-directed mechanism allows extension to other systems, such as the seeded growth of chiral platinum shells on gold nanorods. This approach provides a reproducible, simple, and scalable method toward the fabrication of NPs with high chiral optical activity.

Files (21.4 MB)
Name Size
aba0980_ArticleContent_v5_combined.pdf
md5:680b1cf4a68ad8b34546e2620795ae1b
21.4 MB Download
48
9
views
downloads
Views 48
Downloads 9
Data volume 192.7 MB
Unique views 42
Unique downloads 8

Share

Cite as