Published June 22, 2020 | Version v1
Software Open

mpariente/DPRNNTasNet(ks=16)_WHAM!_sepclean

  • 1. Universite Lorraine, CNRS, Inria, LORIA, France

Description

Description:

This model was trained by Manuel Pariente using the wham/DPRNN recipe in Asteroid. It was trained on the sep_clean task of the WHAM! dataset.

 

Training config:

  • data:
    • mode: min
    • nondefault_nsrc: None
    • sample_rate: 8000
    • segment: 2.0
    • task: sep_clean
    • train_dir: data/wav8k/min/tr
    • valid_dir: data/wav8k/min/cv
  • filterbank:
    • kernel_size: 16
    • n_filters: 64
    • stride: 8
  • main_args:
    • exp_dir: exp/train_dprnn_ks16/
    • help: None
  • masknet:
    • bidirectional: True
    • bn_chan: 128
    • chunk_size: 100
    • dropout: 0
    • hid_size: 128
    • hop_size: 50
    • in_chan: 64
    • mask_act: sigmoid
    • n_repeats: 6
    • n_src: 2
    • out_chan: 64
  • optim:
    • lr: 0.001
    • optimizer: adam
    • weight_decay: 1e-05
  • positional arguments:
  • training:
    • batch_size: 6
    • early_stop: True
    • epochs: 200
    • gradient_clipping: 5
    • half_lr: True
    • num_workers: 6

 

Results:

  • si_sdr: 18.227683982688003
  • si_sdr_imp: 18.22883576588251
  • sdr: 18.617789605060587
  • sdr_imp: 18.466745426438173
  • sir: 29.22773720052717
  • sir_imp: 29.07669302190474
  • sar: 19.116352171914485
  • sar_imp: -130.06009796503054
  • stoi: 0.9722025377865715
  • stoi_imp: 0.23415680987800583

 

License notice:

This work "DPRNNTasNet_WHAM!_sepclean" is a derivative of CSR-I (WSJ0) Complete by LDC, used under LDC User Agreement for Non-Members (Research only). "DPRNNTasNet_WHAM!_sepclean" is licensed under Attribution-ShareAlike 3.0 Unported by Manuel Pariente.

Files

Files (14.6 MB)

Name Size Download all
md5:22e4ff48a8e211790f16776e5bc3a0d8
14.6 MB Download