Published June 22, 2020
| Version v1
Software
Open
mpariente/DPRNNTasNet(ks=16)_WHAM!_sepclean
Description
Description:
This model was trained by Manuel Pariente using the wham/DPRNN recipe in Asteroid. It was trained on the sep_clean
task of the WHAM! dataset.
Training config:
- data:
- mode: min
- nondefault_nsrc: None
- sample_rate: 8000
- segment: 2.0
- task: sep_clean
- train_dir: data/wav8k/min/tr
- valid_dir: data/wav8k/min/cv
- filterbank:
- kernel_size: 16
- n_filters: 64
- stride: 8
- main_args:
- exp_dir: exp/train_dprnn_ks16/
- help: None
- masknet:
- bidirectional: True
- bn_chan: 128
- chunk_size: 100
- dropout: 0
- hid_size: 128
- hop_size: 50
- in_chan: 64
- mask_act: sigmoid
- n_repeats: 6
- n_src: 2
- out_chan: 64
- optim:
- lr: 0.001
- optimizer: adam
- weight_decay: 1e-05
- positional arguments:
- training:
- batch_size: 6
- early_stop: True
- epochs: 200
- gradient_clipping: 5
- half_lr: True
- num_workers: 6
Results:
- si_sdr: 18.227683982688003
- si_sdr_imp: 18.22883576588251
- sdr: 18.617789605060587
- sdr_imp: 18.466745426438173
- sir: 29.22773720052717
- sir_imp: 29.07669302190474
- sar: 19.116352171914485
- sar_imp: -130.06009796503054
- stoi: 0.9722025377865715
- stoi_imp: 0.23415680987800583
License notice:
This work "DPRNNTasNet_WHAM!_sepclean" is a derivative of CSR-I (WSJ0) Complete by LDC, used under LDC User Agreement for Non-Members (Research only). "DPRNNTasNet_WHAM!_sepclean" is licensed under Attribution-ShareAlike 3.0 Unported by Manuel Pariente.
Files
Files
(14.6 MB)
Name | Size | Download all |
---|---|---|
md5:22e4ff48a8e211790f16776e5bc3a0d8
|
14.6 MB | Download |