Software Open Access
Bridging physics and deep learning is a topical challenge. While deep learning frameworks open avenues in physical science, the design of physically-consistent deep neural network architectures is an open issue. In the spirit of physics-informed NNs, PDE-NetGen package provides new means to automatically translate physical equations, given as PDEs, into neural network architectures. PDE-NetGen combines symbolic calculus and a neural network generator. The later exploits NN-based implementations of PDE solvers using Keras. With some knowledge of a problem, PDE-NetGen is a plug-and-play tool to generate physics-informed NN architectures. They provide computationally-efficient yet compact representations to address a variety of issues, including among others adjoint derivation, model calibration, forecasting, data assimilation as well as uncertainty quantification.
Description of the version
Version of the package based on tensorflow.keras, where neural network can be generated by using TrainableScalar
or exogenous network.
Examples
As an illustration, the workflow is first presented for the 2D diffusion equation, then applied to the data-driven and physics-informed identification of uncertainty dynamics for the Burgers equation.
Name | Size | |
---|---|---|
opannekoucke/pdenetgen-1.0.1.zip
md5:7e8d339f19c1baea8b9f51e658f0ca65 |
1.8 MB | Download |
All versions | This version | |
---|---|---|
Views | 102 | 102 |
Downloads | 26 | 26 |
Data volume | 47.5 MB | 47.5 MB |
Unique views | 85 | 85 |
Unique downloads | 24 | 24 |