Published June 8, 2020 | Version 1.0
Dataset Open

fMRI during lower body negative pressure (LBNP) with concurrent physiological measurements

  • 1. Somatosensory and Autonomic Therapy Research, Institute for Neuroradiology, Hannover Medical School, Hanover, Germany
  • 2. Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
  • 3. Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany & Chair of Aerospace Medicine, University of Cologne, Cologne, Germany

Description

This dataset was acquired at Hannover Medical School, Hanover, Germany. The study complied with the Declaration of Helsinki, and was approved by the local ethics committee (# 3404-2016). All subjects gave written informed consent, and consent to publish their data anonimously.

We simulated orthostatic stress by means of lower body negative pressure (LBNP). Negative pressure of 30 mmHg was built up inside a custom-made polycarbonate chamber using a vacuum cleaner and a pressure gauge. The stimulation paradigm consisted of four alternating five-minute blocks, two with and two without negative pressure, starting with the negative pressure. Functional MR images and physiological measures were continuously acquired during this cardiovascular challenge. Transitions between pressure states were excluded to avoid excessive movement.

 

Data acquisition
MRI data
All MR images were acquired on a Siemens 3T MAGNETOM Skyra using a 64-channel head/neck coil. The scanning protocol consisted of the following sequences (see Sequences.ods):

  • func_i: Functional whole brain gradient-echo echo-planar images (EPI) (TR=1230 ms; TE=32 ms; 2mm isotropic resolution; simultaneous multi-slice factor=6; partial Fourier=7/8; 4x233 volumes)
  • func_ref: Reference scan for motion correction and template formation; equivalent to func but without multi-band acceleration (TR=7530 ms)
  • SE_AP_PA: Reference scans for unwarping: Two spin-echo images matched to func in distortion without multi-band acceleration; one with the same, the other one with inverted phase encoding direction.
  • t1: T1-weighted magnetisation-prepared rapid acquisition gradient-echo image (MPRAGE) (TR=2300 ms; TE=2.95 ms; TI=900 ms; resolution: 1.1x1.1x1.2 mm3, in-plane acceleration factor=2)

 

fMRI data preprocessing
Our preprocessing pipleine (JPreprocessing) is optimised for the brainstem and hypothalamus by avoiding superfluous resampling steps and unnecessary smoothing. On that account, motion correction (MCFLIRT (Jenkinson et al., 2002)) and unwarping (topup (Andersson et al.,2003)) are applied in a single transformation. Afterwards, brain extraction (BET (Smith, 2002)), grand mean scaling and high pass filtering (0.005 Hz) are applied. The data are not smoothed.

Two study templates were generated using Advanced Normalization Tools (ANTs (Avants et al., 2008) using antsMultivariateTemplateConstruction2.sh). The first one using the unwarped EPI reference images (func_ref); the second one using the T1-images.


Physiological data
The following physiological measures were acquired with an MR-compatible BIOPAC MP150 system

  • Blood pressure (systolic and dyastolic): Non-invasive continuous blood pressure of the digital artery (pulse decomposition analysis using CareTaker)
  • Electrodermal activity
  • Photoplethysmography
  • Respiration (belt)
  • Electrocardiography


Subject information
01    m    21 a    182 cm    73 kg    129/62 mmHg
02    f    18 a    167 cm    55 kg    104/58 mmHg
03    m    27 a    200 cm    92 kg    127/62 mmHg
04    f    22 a    160 cm    59 kg    120/73 mmHg
05    f    21 a    170 cm    62 kg    125/67 mmHg
06    f    22 a    171 cm    56 kg    130/70 mmHg
07    f    22 a    174 cm    55 kg    119/61 mmHg
08    f    37 a    171 cm    82 kg    130/71 mmHg
09    m    25 a    170 cm    72 kg    129/62 mmHg
10    f    21 a    173 cm    58 kg    116/71 mmHg
11    m    30 a    185 cm    113 kg    125/65 mmHg
12    f    27 a    157 cm    48 kg    127/76 mmHg
13    m    21 a    184 cm    70 kg    127/80 mmHg
14    f    26 a    173 cm    63 kg    120/68 mmHg
15    m    24 a    200 cm    92 kg    129/72 mmHg
16    m    38 a    196 cm    86 kg    133/67 mmHg
17    m    24 a    186 cm    76 kg    125/65 mmHg
18    f    19 a    178 cm    69 kg    102/53 mmHg
19    f    18 a    168 cm    60 kg    125/66 mmHg
20    f    26 a    171 cm    63 kg    122/70 mmHg
21    f    20 a    175 cm    62 kg    122/76 mmHg
22    f    24 a    169 cm    58 kg    114/64 mmHg


Missing data

  •  sub01: physio.acq and physio_cuts.txt
  • sub14: func_3 has 209 time points
  • sub15: func_2 has 167 time points

 

Data structure
Raw data

  • acqparams.txt: Acquisition parameters needed for topup
  • func_i: raw functional data (dummy volumes already deleted)
  • func_ref: Reference image for motion correction and template generation
  • physio.acq: Physiological measurements
    • Trigger
    • Blood pressure (systolic and dyastolic)
    • Electrodermal activity
    • Photoplethysmogram
    • Respiration
    • Electrocardiogram
  • physio_cuts.txt: time points in the physio data that correspond to fMRI blocks (start-time end-time TR #volumes)
  • SE_AP_PA: auxiliary image for unwarping
  • slicetiming_i.txt: Slice timing information in seconds
  • t1: Defaced T1-weighted image. (Undefaced images were used for template generation)


Templates and masks

  • EPI-template: Generated from unwarped func_ref images
    • Transformations for all subjects (can be applied using antsApplyTransforms)
    • wb_mask
  • EPI-2-T1: Transformation from EPI to T1-template
  • MNI-template: T1-template warped into MNI_152
    • hyp_mask
    • lower_bs_mask
  • T1-template: Generated from t1 images
    • hyp_mask
    • lower_bs_mask
  • T1-2-MNI: Transformation from T1 to MNI_152-template


JPreprocessing
Preprocessing pipeline

Files

sub01.zip

Files (21.9 GB)

Name Size Download all
md5:88268c5fcdb4d8fe93975345e8c21ebc
15.8 kB Download
md5:5c8d43d536b405f6d474a7783bf51b22
5.1 kB Download
md5:0c7c29a25fc85c039b66c8759371d03c
30.4 kB Download
md5:26ad8120c002446c4e718d5a0c1ebffc
956.3 MB Preview Download
md5:3d49151b90f742dd27e2bbb1891a6f88
1.0 GB Preview Download
md5:5ee5b24f92190df55351fb06a88a4080
1.1 GB Preview Download
md5:81310d5ee284acaca168545f9975f530
1.0 GB Preview Download
md5:08fdcf18a53e6d5ca87afa0faaaf3544
1.0 GB Preview Download
md5:2a232aa405c84b52285c68c442f7d515
994.4 MB Preview Download
md5:d60f24d1b4cf9dc213990f846e13eab7
1.0 GB Preview Download
md5:38a1617347b454f44b1fb4c2b7f3657d
1.0 GB Preview Download
md5:3158cc2ef181051b34591a7ccd2b94db
1.0 GB Preview Download
md5:eccccd3e52363e349d90cc102a5478be
1.1 GB Preview Download
md5:8ca5a9a9d60eed6af987dc7d9585ae81
1.1 GB Preview Download
md5:8ad56e10e4cec88153e2674ede7325b3
961.2 MB Preview Download
md5:785adea81e7f3c58a16fd4d293b74cf4
1.0 GB Preview Download
md5:8e758e57e2bc5343298f0576cbf88fbf
980.2 MB Preview Download
md5:a191d42f9bc122ddfed002e609ec86ef
1.0 GB Preview Download
md5:fd1967506b1757dec3815f1f3a7711db
923.3 MB Preview Download
md5:cf4fc3774ac3fc83366ed713c9acf264
872.6 MB Preview Download
md5:81522b448d9ac540e034643efa31eb42
846.8 MB Preview Download
md5:2d4a19002163d9d63269021917975a55
845.3 MB Preview Download
md5:1eaa8beb6a30fef5e8a0423bae1fe5ec
883.5 MB Preview Download
md5:7e0264a391e020e7b8d78c01c56bd1d7
812.2 MB Preview Download
md5:7fe2b56a950747d0f5a4ce8ba9b5fdbd
840.0 MB Preview Download
md5:b1eb729620dde8bd996a764051eaf47b
495.7 MB Preview Download

Additional details

Related works

Is source of
Journal article: 10.7554/eLife.55316 (DOI)