Published May 31, 2020 | Version 1.0
Software Open

Pretrained 2D U-Net models for COVID-19 CT Lung and Infection Segmentation

  • 1. Department of Mathematics, Nanjing University of Science and Technology
  • 2. Institute of Computing Technology, Chinese Academy of Sciences;University of Chinese Academy of Sciences
  • 3. China Electronics Cloud Brain (Tianjin) Technology CO., LTD
  • 4. Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology
  • 5. Institute of Science and Technology for Brain-inspired Intelligence, Fudan University

Description

We provide 45 trained 2D U-Net baseline models for COVID-19 CT Lung and Infection Segmentation benchmark (https://gitee.com/junma11/COVID-19-CT-Seg-Benchmark).

The implementation is based on nnU-Net that is an out-of-the-box segmentation tool for 3D biomedical image data. 

Instructions for how to use the models are provided at https://github.com/MIC-DKFZ/nnUNet

Ground truth can be download at http://doi.org/10.5281/zenodo.3757476

Files

01_Task1_Prediction.zip

Files (14.3 GB)

Name Size Download all
md5:5ac4a2accc1f111eb61acef4581a10bd
36.7 MB Preview Download
md5:d30ea78560d7831b69a8b58251cc23b0
19.5 MB Preview Download
md5:173e50adb8d4a0265ce3f2e57bb0aefb
54.5 MB Preview Download
md5:eca20bf4fd6bb72e1ffde798f71b35f0
1.6 GB Preview Download
md5:3d0f99ac000ced649ce7bac4fe886dd7
1.5 GB Preview Download
md5:2c51dbc3d838cd7e0d0108047400a275
1.6 GB Preview Download
md5:ae98d527c3b931cd52178014c6298373
319.6 MB Preview Download
md5:924fa582760d4a8333554565bf14015b
393.0 MB Preview Download
md5:8a141be52db487149900adbc4645b6f0
308.7 MB Preview Download
md5:e401a3dcb5638944e391337f4db78c83
310.3 MB Preview Download
md5:026f67eaac87938346d41123b480b008
310.6 MB Preview Download
md5:c88b847215c42f9a3e7643e8bdf131d8
1.6 GB Preview Download
md5:f7c2b56079b1e50a5709bf4614dce2ea
1.6 GB Preview Download
md5:c64735bae9b1e587eb5967270eaf6bbd
1.6 GB Preview Download
md5:32971e29d9022d6b202642a82c8bc439
1.6 GB Preview Download
md5:89e6412d8031ed86e4eab867f14c782a
1.6 GB Preview Download

Additional details

Related works