Preprint Open Access

Insights into image contrast from dislocations in ADF-STEM

Oveisi, E; Spadaro, M.C.; Rotunno, Enzo; Grillo, Vincenzo; Hébert, C

Competitive mechanisms contribute to image contrast from dislocations in annular dark-field scanning transmission electron microscopy (ADF-STEM). A clear theoretical understanding of the mechanisms underlying the ADF-STEM contrast is therefore essential for correct interpretation of dislocation images. This paper reports on a systematic study of the ADF-STEM contrast from dislocations in a GaN specimen, both experimentally and computationally. Systematic experimental ADF-STEM images of the edge-character dislocations reveal a number of characteristic contrast features that are shown to depend on both the angular detection range and specific position of the dislocation in the sample. A theoretical model based on electron channelling and Bloch-wave scattering theories, supported by numerical simulations based on Grillo's strain-channelling equation, is proposed to elucidate the physical origin of such complex contrast phenomena.

Files (2.0 MB)
Name Size
2005.10093.pdf
md5:af2a95b62f98222ef7f6ed3c639fd8ea
2.0 MB Download
8
8
views
downloads
Views 8
Downloads 8
Data volume 41.4 MB
Unique views 6
Unique downloads 6

Share

Cite as