Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

There is a newer version of the record available.

Published May 19, 2020 | Version v1
Dataset Open

HeLa cell images with four labels (nuclear envelope, nucleus, rest of the cell, and background) for deep learning architecture training.

Description

This is a data set that contains labeled HeLa cell images, generated in MATLAB® Image Labeler, indicating the four different classes - nuclear envelope, nucleus, rest of the cell, and background for deep learning architecture training. 

Details of the imaging and preparation have been published in:

  • Cefa Karabağ, Martin L. Jones, Christopher J. Peddie, Anne E. Weston, Lucy M. Collinson, Constantino Carlos Reyes-Aldasoro. Segmentation and Modelling of the Nuclear Envelope of HeLa Cells Imaged with Serial Block Face Scanning Electron Microscopy. J. Imaging 2019, 5(9), 75; https://doi.org/10.3390/jimaging5090075

and

  • The data sets are freely available through EMPIAR: http://dx.doi.org/10.6019/EMPIAR-10094 EMPIAR.

 

Details on the segmentation and analysis of HeLa cells have been published in:

  • Cefa Karabağ, Martin L. Jones, Christopher J. Peddie, Anne E. Weston, Lucy M. Collinson, Constantino Carlos Reyes-Aldasoro. Semantic Segmentation of HeLa Cells: An Objective Comparison between one Traditional Algorithm and Three Deep-Learning Architectures, BioRxiv, https://doi.org/10.1101/2020.03.05.978478

and

  • Cefa Karabağ, Martin L. Jones, Christopher J. Peddie, Anne E. Weston, Lucy M. Collinson, Constantino Carlos Reyes-Aldasoro. Segmentation and Modelling of the Nuclear Envelope of HeLa Cells Imaged with Serial Block Face Scanning Electron Microscopy. J. Imaging 2019, 5(9), 75; https://doi.org/10.3390/jimaging5090075

 

Files

Files (100.1 MB)

Name Size Download all
md5:448a26c6211c7513043ed53a28d6b36f
100.1 MB Download