Design of the three-level multicriterial strategy of hybrid marine power plant control for a combined propulsion complex
Description
Purpose. Efficiency of hybrid ships power plants (SPP) combined propulsion complexes (CPC) by various criteria for energy management systems strategies.
Methodology. Based on the classification system topologies SPP CPC for mechanical, electrical and hybrid types of motors schematic diagrams of management strategies for the criterion of minimum power consumption are defined. Changing the technical component of the traditional approach to building hybrid ships electric power systems (SEPS) SPP CPC the principle of modifying the structure of SEPS is applied with the integration of additional static alternative power source as dynamic reserve, which allowed to meet modern requirements for energy efficiency, levels of vibration, noise and degradation effects produced to SPP CPC, in all areas of the energy for the transfer of power from energy to propellers. Modeling of power transmission of energy to propellers in MatLab/Simulink is conducted, using blocks of optimization library and definition of identity markers.
Results. Major advantages and disadvantages SPP CPC depending on the topology of energy distribution systems are determined. According to the chosen structure system electricity characteristics were obtained in the process of power transmission SPP CPC and power systems and their control strategies in terms of increased efficiency and eliminate these drawbacks. And finally, mathematical apparatus for research in terms of the development of methods for designing and managing SPP hybrid CPC to reduced fuel consumption, emissions into the environment and improving maintainability, flexibility and comfort level are improved. Originality. The methodology for improving SPP CPC implementation by developing methods of identification markers mutually influencing processes in SPP CPC and the development of implementing these methods of settlement and information systems. Practical value. The method enables iterative optimization parameters SPP CPC, it can be used as a means of intelligent design, which is the result of the application of improved performance SPP CPC.
Files
Budashko.pdf
Files
(1.2 MB)
Name | Size | Download all |
---|---|---|
md5:e9dd8a3fa50714c7b5f4cf5245541e1c
|
1.2 MB | Preview Download |
Additional details
References
- Geertsma R.D., Negenborn R.R., Visser K., Hopm J.J. Design and control of hybrid power and propulsion systems for smart ships: A review of developments. Applied Energy, 2017, v.194, pp. 30-54. doi: 10.1016/j.apenergy.2017.02.060.
- Kim D.H., Paik J.K. Ultimate limit state-based multi-objective optimum design technology for hull structural scantlings of merchant cargo ships. Ocean Engineering, 2017, v.129, pp. 318-334. doi: 10.1016/j.oceaneng.2016.11.033.
- Gonca G., Sahin B., Parlak A., Ust Y., Ayhan V., Cesur İ., Boru B. Theoretical and experimental investigation of the Miller cycle diesel engine in terms of performance and emission parameters. Applied Energy, 2015, v.138, pp. 11-20. doi: 10.1016/j.apenergy.2014.10.043.
- Ko J., Jin D., Jang W., Myung C.-L., Kwon S., Park S. Comparative investigation of NOx emission characteristics from a Euro 6-compliant diesel passenger car over the NEDC and WLTC at various ambient temperatures. Applied Energy, 2017, v.187, pp. 652-662. doi: 10.1016/j.apenergy.2016.11.105.
- Baldi F., Johnson H., Gabrielii C., Andersson K. Energy Analysis of Ship Energy Systems – The Case of a Chemical Tanker. Energy Procedia, 2014, v.61, pp. 1732-1735. doi: 10.1016/j.egypro.2014.12.200.
- Vrijdag A., Stapersma D., van Terwisga T. Control of propeller cavitation in operational conditions. Journal of Marine Engineering & Technology, 2010, v.9, pp. 15-26. doi: 10.1080/20464177.2010.11020228.
- Natale F.D., Carotenuto C. Particulate matter in marine diesel engines exhausts: Emissions and control strategies. Transportation Research Part D: Transport and Environment, 2015, v.40, pp. 166-191. doi: 10.1016/j.trd.2015.08.011.
- Zhao F., Yang W., Tan W.W., Yu W., Yang J., Chou S.K. Power management of vessel propulsion system for thrust efficiency and emissions mitigation. Applied Energy, 2016, v.161, pp. 124-132. doi: 10.1016/j.apenergy.2015.10.022.
- Bassam A.M., Phillips A.B., Turnock S.R., Wilson P.A. An improved energy management strategy for a hybrid fuel cell/battery passenger vessel. International Journal of Hydrogen Energy, 2016, v.41, iss.47, pp. 22453-22464. doi: 10.1016/j.ijhydene.2016.08.049.
- Symington W.P., Belle A., Nguyen H.D., Binns J.R. Emerging technologies in marine electric propulsion. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2014, v.230, iss.1, pp. 187-198. doi: 10.1177/1475090214558470.
- Kwatny H.G., Bajpai G., Miu K., Yasar M. Fuel Optimal Control With Service Reliability Constraints for Ship Power Systems. IFAC Proceedings Volumes, 2014, v.47, iss.3, pp. 6386-6391. doi: 10.3182/20140824-6-ZA-1003.01773.
- Chuang S.-J., Hong C.-M., Chen C.-H. Improvement of integrated transmission line transfer index for power system voltage stability. International Journal of Electrical Power & Energy Systems, 2016, v.78, pp. 830-836. doi: 10.1016/j.ijepes.2015.11.111.
- Vernengo G., Gaggero T., Rizzuto E. Simulation based design of a fleet of ships under power and capacity variations. Applied Ocean Research, 2016, v.61, pp. 1-15. doi: 10.1016/j.apor.2016.09.003.
- Lützen M., Mikkelsen L.L., Jensen S., Rasmussen H.B. Energy efficiency of working vessels – A framework. Journal of Cleaner Production, 2017, v.143, pp. 90-99. doi: 10.1016/j.jclepro.2016.12.146.
- McCoy T.J. Trends in ship electric propulsion. IEEE Power Engineering Society Summer Meeting, 2002, v.1, pp. 243-346. doi: 10.1109/PESS.2002.1043247.
- Zivi E. Design of robust shipboard power automation systems. Annual Reviews in Control, 2005, v.29, iss.2, pp. 261-272. doi: 10.1016/j.arcontrol.2005.08.004.
- Castles G., Reed G., Bendre A., Pitsch R. Economic benefits of hybrid drive propulsion for naval ships. IEEE Electric Ship Technologies Symposium, 2009. doi: 10.1109/ESTS.2009.4906560.
- Baldi F., Ahlgren F., Melino F., Gabrielii C., Andersson K. Optimal load allocation of complex ship power plants. Energy Conversion and Management, 2016, v.124, pp. 344-356. doi: 10.1016/j.enconman.2016.07.009.
- Sulligoi G., Castellan S., Aizza M., Bosich D., Piva L., Lipardi G. Active front-end for shaft power generation and voltage control in FREMM frigates integrated power system: Modeling and validation. International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion, 2012, pp. 452-457. doi: 10.1109/SPEEDAM.2012.6264570.
- Bigdeli N. Optimal management of hybrid PV/fuel cell/battery power system: a comparison of optimal hybrid approaches. Renewable and Sustainable Energy Reviews, 2015, v.42, pp. 377-393. doi: 10.1016/j.rser.2014.10.032.
- Choi C.H., Yu S., Han I.-S., Kho B.-K., Kang D.-G., Lee H.Y., Seo M.-S., Kong J.-W., Kim G., Ahn J.-W., Park S.-K., Jang D.-W., Lee J.H., Kim M. Development and demonstration of PEM fuel-cell-battery hybrid system for propulsion of tourist boat. International Journal of Hydrogen Energy, 2016, v.41, iss.5, pp. 3591-3599. doi: 10.1016/j.ijhydene.2015.12.186.
- José J. de-Troya, Álvarez C., Fernández-Garrido C., Carral L. Analysing the possibilities of using fuel cells in ships. International Journal of Hydrogen Energy, 2016, v.41, iss.4, pp. 2853-2866. doi: 10.1016/j.ijhydene.2015.11.145.
- Nelson D.B., Nehrir M.H., Wang C. Unit sizing and cost analysis of stand-alone hybrid wind/PV/fuel cell power generation systems. Renewable Energy, 2006, v.31, iss.10, pp. 1641-1656. doi: 10.1016/j.renene.2005.08.031.
- Ramli M., Hiendro A., Twaha S. Economic analysis of PV/diesel hybrid system with flywheel energy storage. Renewable Energy, 2015, v.78, pp. 398-405. doi: 10.1016/j.renene.2015.01.026.
- Rezzouk H., Mellit A. Feasibility study and sensitivity analysis of a stand-alone photovoltaic-diesel-battery hybrid energy system in the north of Algeria. Renewable and Sustainable Energy Reviews, 2015, v.43, pp. 1134-1150. doi: 10.1016/j.rser.2014.11.103.
- Vetter M., Lux S. Rechargeable Batteries with Special Reference to Lithium-Ion Batteries. Storing Energy, 2016, pp. 205-225. doi: 10.1016/B978-0-12-803440-8.00011-7.
- Zahedi B., Norum L.E., Ludvigsen K.B. Optimized efficiency of all-electric ships by DC hybrid power systems. Journal of Power Sources, 2014, v.255, pp. 341-354. doi: 10.1016/j.jpowsour.2014.01.031.
- Wang L., Lee D.J., Lee W.J., Chen Z. Analysis of a novel autonomous marine hybrid power generation/energy storage system with a high-voltage direct current link. Journal of Power Sources, 2008, v.185, iss.2, pp. 1284-1292. doi: 10.1016/j.jpowsour.2008.08.037.
- Ovrum E., Bergh T.F. Modelling lithium-ion battery hybrid ship crane operation. Applied Energy, 2015, v.152, pp. 162-172. doi: 10.1016/j.apenergy.2015.01.066.
- Haseltalab A., Negenborn R.R., Lodewijks G. Multi-Level Predictive Control for Energy Management of Hybrid Ships in the Presence of Uncertainty and Environmental Disturbances. IFAC-Papers On Line, 2016, v.49, iss.3, pp. 90-95. doi: 10.1016/j.ifacol.2016.07.016.
- Lashway C.R., Elsayed A.T., Mohammed O.A. Hybrid energy storage management in ship power systems with multiple pulsed loads. Electric Power Systems Research, 2016, v.141, pp. 50-62. doi: 10.1016/j.epsr.2016.06.031.
- Giannoutsos S.V., Manias S.N. Energy management and D/G fuel consumption optimization in the power system of marine vessels through VFD-based process flow control. IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), 2015, pp. 842-850. doi: 10.1109/EEEIC.2015.7165274.
- Zhao F., Yang W., Tan W.W., Yu W., Yang J., Chou S.K. Power management of vessel propulsion system for thrust efficiency and emissions mitigation. Applied Energy, 2016, v.161, pp. 124-132. doi: 10.1016/j.apenergy.2015.10.022.
- Papalambrou G., Karlis E., Kyrtatos N. Robust Control of Manifold Air Injection in a Marine Diesel Engine. IFAC-Papers On Line, 2015, v.48, iss.14, pp. 438-443. doi: 10.1016/j.ifacol.2015.09.496.
- Papalambrou G., Kyrtatos N. Controlled Injection of Compressed Air in Marine Diesel Engine Intake for Improved Load Acceptance. IFAC Proceedings Volumes, 2009, v.42, iss.26, pp. 140-147. doi: 10.3182/20091130-3-FR-4008.00019.
- Shih N.-C., Weng B.-J., Lee J.-Y., Hsiao Y.-C. Development of a 20kW generic hybrid fuel cell power system for small ships and underwater vehicles. International Journal of Hydrogen Energy, 2014, v.39, iss.25, pp. 13894-13901. doi: 10.1016/j.ijhydene.2014.01.113.
- Zhang S., Xiong R., Sun F. Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system. Applied Energy, 2017, v.185, pp. 1654-1662. doi: 10.1016/j.apenergy.2015.12.035.
- Butcher M., Maltby R., Parvin P.S. Compact DC power and propulsion systems – the definitive solution? IEEE Electric Ship Technologies Symposium, 2009, pp. 521-528. doi: 10.1109/ESTS.2009.4906561.
- Hodge C.G., Mattick D.J. The electric warship then, now and later. Proceedings of the 9th international naval engineering conference, 2008, pp. 556-565.
- Indragandhi V., Subramaniyaswamy V., Logesh R. Resources, configurations, and soft computing techniques for power management and control of PV/wind hybrid system. Renewable and Sustainable Energy Reviews, 2017, v.69, pp. 129-143. doi: 10.1016/j.rser.2016.11.209.
- Budashko V., Nikolskyi V., Onishchenko O., Khniunin S. Physical model of degradation effect by interaction azimuthal flow with hull of ship. Proceeding Book of International Conference on Engine Room Simulators (ICERS12). Istanbul: Istanbul Technical University, Maritime Faculty, 2015. pp. 49-53. ISBN 978-605-01-0782-1.
- Nikolskyi V., Budashko V., Khniunin S. The monitoring system of the Coanda effect for the tension-leg platform's. Proceeding Book of International Conference on Engine Room Simulators (ICERS12). Istanbul: Istanbul Technical University, Maritime Faculty, 2015. pp. 45-49. ISBN 978-605-01-0782-1.
- Budashko V.V., Onishchenko O.A. Improving management system combined thruster propulsion systems. Bulletin of NTU «KhPІ», 2014, no.38(1081), pp. 45-51. (Ukr).
- Budashko V.V. Implementation approaches during simulation of energy processes for a dynamically positioned ship. Electrical Engineering & Electromechanics, 2015, no.6, pp. 14-19. doi: 10.20998/2074-272X.2015.6.02. (Rus).
- Budashko V.V., Onischenko O.A., Yushkov E.A. Physical modeling of multi-propulsion complex. Collection of scientific works of the Military Academy (Odessa City), 2014, no.2, pp. 88-92. (Rus).
- Budashko V.V., Nikolskyi V.V., Khniunin S.H. Sudova systema monitorynhu dlya poperedzhennya effektu Koanda [Ship monitoring system for the prevention of Coanda effect]. Patent UA, no.100819, 2015. (Ukr).
- Budashko V.V., Yushkov E.A. Systema impul'sno-fazovoho upravlinnya elektropryvodom sudnovoyi hvynto-kermovoyi ustanovky [The pulse-phase control system of electric ship propeller-steering plant]. Patent UA, no.108074, 2016. (Ukr).
- Khniunin S.H., Budashko V.V., Nikolskyi V.V. Sudova systema monitorynhu dlya poperedzhennya effektu Koanda [Ship system for monitoring for preventing the Coanda effect]. Patent UA, no.107006, 2016. (Ukr).
- Budashko V., Nikolskyi V., Onishchenko O., Khniunin S. Decision support system's concept for design of combined propulsion complexes. Eastern-European Journal of Enterprise Technologies, 2016, v.3, no.8(81), pp. 10-21. doi: 10.15587/1729-4061.2016.72543.