Published May 8, 2020 | Version v1
Journal article Restricted

Predicting the global mammalian viral sharing network using phylogeography

  • 1. EcoHealth Alliance, New York, NY, USA

Description

Albery, Gregory F., Eskew, Evan A., Ross, Noam, Olival, Kevin J. (2020): Predicting the global mammalian viral sharing network using phylogeography. Nature Communications 11 (1): 364001, DOI: 10.1038/s41467-020-16153-4, URL: http://dx.doi.org/10.1038/s41467-020-16153-4

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFABFFF06935FFFA8B5BC1659C6FFFC8

Related works

Cites
Publication: 10.1101/2020.01.24.918755 (DOI)
Has part
Figure: 10.5281/zenodo.3818129 (DOI)
Figure: 10.5281/zenodo.3818131 (DOI)
Figure: 10.5281/zenodo.3818133 (DOI)

References

  • 1. Woolhouse, M. E. J. & Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 11, 1842-1847 (2005).
  • 2. Johnson, C. K. et al. Spillover and pandemic properties of zoonotic viruses with high host plasticity. Sci. Rep. 5, 1-8 (2015).
  • 3. Carroll, D. et al. The Global Virome Project. Science 359, 872-874 (2018).
  • 4. Carlson, C. J., Zipfel, C. M., Garnier, R. & Bansal, S. Global estimates of mammalian viral diversity accounting for host sharing. Nat. Ecol. Evol. 3, 1070-1075 (2019).
  • 5. Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646-650 (2017).
  • 6. Han, B. A. et al. Undiscovered bat hosts of filoviruses. PLoS Negl. Trop. Dis. 10, e0004815 (2016).
  • 7. Babayan, S. A., Orton, R. J. & Streicker, D. G. Predicting reservoir hosts and arthropod vectors from evolutionary signatures in RNA virus genomes. Science 362, 577-580 (2018).
  • 7. Babayan, S. A., Orton, R. J. & Streicker, D. G. Predicting reservoir hosts and arthropod vectors from evolutionary signatures in RNA virus genomes.
  • 8. Luis, A. D. et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc. R. Soc. B: Biol. Sci. 280, 20122753 (2013).
  • 9. Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc. Natl. Acad. Sci. U.S.A. 112, 7039-7044 (2015).
  • 10. Plourde, B. T. et al. Are disease reservoirs special? Taxonomic and life history characteristics. PLoS ONE 12, e0180716 (2017).
  • 11. Dallas, T. A. et al. Host traits associated with species roles in parasite sharing networks. Oikos 128, 23-32 (2019).
  • 12. Plowright, R. K. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502-510 (2017).
  • 13. Ge, X. Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535-538 (2013).
  • 14. Huang, S., Bininda-Emonds, O. R. P., Stephens, P. R., Gittleman, J. L. & Altizer, S. Phylogenetically related and ecologically similar carnivores harbour similar parasite assemblages. J. Anim. Ecol. 83, 671-680 (2014).
  • 15. Wells, K. et al. Global spread of helminth parasites at the human-domestic animal-wildlife interface. Glob. Change Biol. 24, 3254-3265 (2018).
  • 16. Stephens, P. R. et al. Parasite sharing in wild ungulates and their predators: effects of phylogeny, range overlap, and trophic links. J. Anim. Ecol. 88, 1017-1028 (2019).
  • 17. Streicker, D. G. et al. Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats. Science 329, 676-679 (2010).
  • 18. Willoughby, A. R., Phelps, K. L., PREDICT Consortium & Olival, K. J. A comparative analysis of viral richness and viral sharing in cave-roosting bats. Diversity 9, 1-16 (2017).
  • 19. Davies, T. J. & Pedersen, A. B. Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proc. R. Soc. B: Biol. Sci. 275, 1695-1701 (2008).
  • 20. Glennon, E. E. et al. Domesticated animals as hosts of henipaviruses and filoviruses: a systematic review. Vet. J. 233, 25-34 (2018).
  • 21. Chua, K. B. et al. Nipah virus: a recently emergent deadly paramyxovirus. Science 288, 1432-1435 (2000).
  • 22. Tompkins, D. M., Sainsbury, A. W., Nettleton, P., Buxton, D. & Gurnell, J. Parapoxvirus causes a deleterious disease in red squirrels associated with UK population declines. Proc. R. Soc. B: Biol. Sci. 269, 529-533 (2002).
  • 23. Guy, C., Thiagavel, J., Mideo, N. & Ratcliffe, J. M. Phylogeny matters: revisiting 'a comparison of bats and rodents as reservoirs of zoonotic viruses'. R. Soc. Open Sci. 6, 181182 (2019).
  • 24. Pybus, O. G., Tatem, A. J. & Lemey, P. Virus evolution and transmission in an ever more connected world. Proc. R. Soc. B: Biol. Sci. 282, 20142878 (2015).
  • 25. Sanjuan, R., Nebot, M. R., Chirico, N., Mansky, L. M. & Belshaw, R. Viral mutation rates. J. Virol. 84, 9733-9748 (2010).
  • 26. Ryan, S. J., Carlson, C. J., Mordecai, E. A. & Johnson, L. R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl. Trop. Dis. 13, e0007213 (2019).
  • 27. Drake, J. M. & Beier, J. C. Ecological niche and potential distribution of Anopheles arabiensis in Africa in 2050. Malar. J. 13, 213 (2014).
  • 28. IUCN. The IUCN Red List of Threatened Species. Version 2019-2. Available at: https://www.iucnredlist.org (2019).
  • 29. Fritz, S. A., Bininda-Emonds, O. R. P. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol. Lett. 12, 538-549 (2009).
  • 30. Wardeh, M., Risley, C., Mcintyre, M. K., Setzkorn, C. & Baylis, M. Database of host- pathogen and related species interactions, and their global distribution. Sci. Data 2, 150049 (2015).
  • 31. Gomez, J. M., Nunn, C. L. & Verdu, M. Centrality in primate-parasite networks reveals the potential for the transmission of emerging infectious diseases to humans. Proc. Natl. Acad. Sci. U.S.A. 110, 7738-7741 (2013).
  • 32. Wang, Y. X. G. et al. Phylogenetic structure of wildlife assemblages shapes patterns of infectious livestock diseases in Africa. Funct. Ecol. 33, 1332-1341 (2019).
  • 33. Allen, T. et al. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 8, 1124 (2017).
  • 34. Becker, D. J., Crowley, D. E., Washburne, A. D. & Plowright, R. K. Temporal and spatial limitations in global surveillance for bat filoviruses and henipaviruses. Biol. Lett. 15, 20190423 (2019).
  • 35. Xie, J. et al. Dampened STING-dependent interferon activation in bats. Cell Host Microbe 23, 297-301 (2018).
  • 36. Park, A. W. Phylogenetic aggregation increases zoonotic potential of mammalian viruses. Biol. Lett. 15, 20190668 (2019).
  • 37. Lloyd-Smith, J. O. et al. Epidemic dynamics at the human- animal interface. Science 326, 1362-1368 (2009).
  • 38. Brose, U., Ostling, A., Harrison, K. & Martinez, N. D. Unified spatial scaling of species and their trophic interactions. Nature 108, 167-171 (2003).
  • 39. Silk, M. J. et al. Integrating social behaviour, demography and disease dynamics in network models: applications to disease management in declining wildlife populations. Philos. Trans. R. Soc. B 374, 20180211 (2019).
  • 40. Carlson, C. J. et al. Parasite biodiversity faces extinction and redistribution in a changing climate. Sci. Adv. 3, e1602422 (2017).
  • 41. Williams, J. E. & Blois, J. L. Range shifts in response to past and future climate change: can climate velocities and species' dispersal capabilities explain variation in mammalian range shifts? J. Biogeogr. 45, 2175-2189 (2018).
  • 42. Chen, I.-C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024-1026 (2011).
  • 43. Carlson, C. J. et al. Climate change will drive novel cross-species viral transmission. bioRxiv. https://doi.org/10.1101/2020.01.24.918755 (2020).
  • 44. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2018).
  • 45. Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc.: Ser. B 73, 3-36 (2011).
  • 46. Rushmore, J. et al. Social network analysis of wild chimpanzees provides insights for predicting infectious disease risk. J. Anim. Ecol. 82, 976-986 (2013).
  • 47. Wells, K., Morand, S., Wardeh, M. & Baylis, M. Distinct spread of DNA and RNA viruses among mammals amid prominent role of domestic species. Glob. Ecol. Biogeogr. 29, 470-481 (2020).