Published March 18, 2020 | Version v1
Journal article Restricted

Late Cretaceous neornithine from Europe illuminates the origins of crown birds

Description

Field, Daniel J., Benito, Juan, Chen, Albert, Jagt, John W. M., Ksepka, Daniel T. (2020): Late Cretaceous neornithine from Europe illuminates the origins of crown birds. Nature 579: 397-414, DOI: 10.1038/s41586-020-2096-0

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFA5A453FC5CFFEC356DAA328E07DF59
URL
http://publication.plazi.org/id/FFA5A453FC5CFFEC356DAA328E07DF59

References

  • 1. Prum, R. O.et al.A comprehensive phylogeny of birds (Aves) using targeted nextgeneration DNA sequencing.Nature 526, 569-573 (2015).
  • 2. Jarvis, E.D. et al. Whole-genome analyses resolve early branches in the tree of life of modern birds.Science 346, 1320-1331 (2014).
  • 3. Claramunt,S. & Cracraft,J. A new time tree reveals Earth history's imprint on the evolution of modern birds.Sci. Adv. 1, e1501005 (2015).
  • 4. Field,D.J. et al. Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction. Curr.Biol. 28, 1825-1831 (2018).
  • 5. Larson, D. W.,Brown,C.M. & Evans,D.C.Dental disparity and ecological stability in bird-like dinosaurs prior to the end-Cretaceous mass extinction.Curr. Biol. 26, 1325-1333 (2016).
  • 6. Mayr,G. Avian higher level biogeography:Southern Hemispheric origins or Southern Hemispheric relicts? J. Biogeogr. 44, 956-958 (2017).
  • 7. Saupe,E. E. et al. Climatic shifts drove major contractions in avian latitudinal distributions throughout the Cenozoic.Proc.Natl Acad.Sci. USA 116, 12895-12900 (2019).
  • 8. Ksepka,D. T.& Phillips,M. J. Avian diversification patterns across the K-Pg boundary: influence of calibrations,datasets,and model misspecification. Ann. Mo. Bot. Gard. 100, 300-328 (2015).
  • 9. Berv,J.S.& Field,D. J. Genomic signature of an avian Lilliput effect across the K-Pg extinction. Syst.Biol. 67, 1-13 (2018).
  • 10. Field,D.J. et al. Timing the extant avian radiation:the rise of modern birds,and the importance of modeling molecular rate variation. PeerJ Preprints 7, e27521v1 (2019).
  • 11. Mayr,G. Avian Evolution (Wiley,2016).
  • 12. Clarke, J.A., Tambussi,C.P., Noriega, J.I., Erickson,G.M.& Ketcham,R. A.Definitive fossil evidence for the extant avian radiation in the Cretaceous.Nature 433, 305-308 (2005).
  • 13. Dyke,G. J.et al.Europe's last Mesozoic bird. Naturwissenschaften 89, 408-411 (2002).
  • 14. Xing,L., Stanley,E. L., Bai, M. & Blackburn,D. C.The earliest direct evidence of frogs in wet tropical forests from Cretaceous Burmese amber.Sci. Rep. 8, 8770 (2018).
  • 15. Simoes,T.R. et al. The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps.Nature 557, 706-709 (2018).
  • 16. Evers,S. W.,Barrett,P. M. & Benson, R. B.J. Anatomy of Rhinochelys pulchriceps (Protostegidae) and marine adaptation during the early evolution of chelonioids.PeerJ 7, e6811 (2019).
  • 17. Bi, S. et al. An Early Cretaceous eutherian and the placental-marsupial dichotomy.Nature 558, 390-395 (2018).
  • 18. Lee,M. S.Y.& Yates,A. M. Tip-dating and homoplasy:reconciling the shallow molecular divergences of modern gharials with their long fossil record. Proc. R. Soc. Lond. B 285, 20181071 (2018).
  • 19. Hope, S. in Mesozoic Birds: Above the Heads of Dinosaurs (eds Chiappe,L. M. & Witmer, L. M.) 339-388 (Univ.California Press,2002).
  • 20. Longrich, N. R., Tokaryk,T.& Field, D.J. Mass extinction of birds at the Cretaceous- Paleogene (K-Pg) boundary.Proc.Natl Acad.Sci. USA 108, 15253-15257 (2011).
  • 21. Mayr,G. Paleogene Fossil Birds (Springer,2009).
  • 22. Clyde, W.C., Ramezani, J., Johnson,K.R., Bowring,S.A. & Jones,M. M.Direct highprecision U-Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales.Earth Planet. Sci.Lett. 452, 272-280 (2016).
  • 23. Gauthier, J.A. & de Queiroz,K. in New Perspectives on the Origin and Early Evolution of Birds: Proceedings of the International Symposium in Honor of John H. Ostrom (eds Gauthier, J.& Gall,L. F.) 7-41 (Peabody Museum of Natural History,Yale University, 2001).
  • 24. Keutgen,N.A bioclast-based astronomical timescale for the Maastrichtian in the type area (southeast Netherlands, northeast Belgium) and stratigraphic implications:the legacy of PJ Felder.Neth. J. Geosci. 97, 229-260 (2018).
  • 25. Field,D. J.,Lynner,C., Brown,C. & Darroch, S. A.F. Skeletal correlates for body mass estimation in modern and fossil flying birds.PLoS One 8, e82000 (2013).
  • 26. Olson,S.L.& Feduccia,A.Presbyornis and the origin of the Anseriformes (Aves: Charadriomorphae).Smithson.Contrib.Zool. 323, 1-24 (1980).
  • 27. Elzanowski,A. & Stidham,T.A.Morphology of the quadrate in the Eocene anseriform Presbyornis and extant galloanserine birds.J. Morphol. 271, 305-323 (2010).
  • 28. Worthy, T.H., Degrange, F.J., Handley,W.D. & Lee,M. S.Y.The evolution of giant flightless birds and novel phylogenetic relationships for extinct fowl (Aves, Galloanseres).R. Soc. Open Sci. 4, 170975 (2017).
  • 29. Tambussi,C.P., Degrange,F. J.,De Mendoza,R.S., Sferco,E. & Santillana,S.A stem anseriform from the early Palaeocene of Antarctica provides new key evidence in the early evolution of waterfowl.Zool. J.Linn. Soc. 186, 673-700 (2019).
  • 30. Mayr,G., De Pietri,V.L., Love,L., Mannering,A.& Scofield,R.P.Oldest, smallest and phylogenetically most basal pelagornithid,from the early Paleocene of New Zealand, sheds light on the evolutionary history of the largest flying birds.Pap. Palaeontol.https:// doi.org/10.1002/spp2.1284 (2019).
  • 31. Budd,G.E. & Mann,R.P.The dynamics of stem and crown groups.Sci. Adv. 6, eaaz1626 (2020).
  • 32. Ksepka, D.T.& Clarke,J.Phylogenetically vetted and stratigraphically constrained fossil calibrations within Aves.Palaeontologia Electronica 18, 18.1.3FC (2015).
  • 33. Mayr,G., De Pietri,V.L., Scofield,R. P. & Worthy,T.H. On the taxonomic composition and phylogenetic affinities of the recently proposed clade Vegaviidae Agnolin et al., 2017 - neornithine birds from the Upper Cretaceous of the Southern Hemisphere.Cretaceous Research 86, 178-185 (2018).
  • 34. Clarke,J. A.et al.Fossil evidence of the avian vocal organ from the Mesozoic.Nature 538, 502-505 (2016).
  • 35. Agnolin,F.L., Egli,F. B., Chatterjee,S.,Marsa,J.A.G.& Novas, F.E. Vegaviidae, a new clade of southern diving birds that survived the K/T boundary.Naturwissenschaften 104, 87 (2017).
  • 36. O'Connor,J.K., Chiappe,L. M.& Bell, A. in Living Dinosaurs: The Evolutionary History of Modern Birds (eds Dyke,G.& Kaiser,G.) 39-114 (Wiley-Blackwell,2011).
  • 37. Cracraft,J. in The Phylogeny and Classification of the Tetrapods Vol. 1 (ed.Benton,M. J.) 339-361 (Oxford Univ.Press,1988).
  • 38. Livezey,B.C. A phylogenetic analysis of basal Anseriformes,the fossil Presbyornis, and the interordinal relationships of waterfowl.Zool. J. Linn. Soc. 121, 361-428 (1997).
  • 39. Cracraft,J. & Clarke,J. The basal clades of modern birds.In New Perspectives on the Origin and Early Evolution of Birds: Proceedings of the International Symposium in Honor of John H. Ostrom (eds Gauthier,J.& Gall,L. F.) 143-156 (Peabody Museum of Natural History,Yale University,2001).
  • 40. Felice, R. N. & Goswami,A. Developmental origins of mosaic evolution in the avian cranium.Proc. Natl Acad. Sci. USA 115, 555-560 (2018).
  • 41. Field,D. J.Endless skulls most beautiful.Proc. Natl Acad. Sci. USA 115, 448-450 (2018).
  • 42. Huxley,T.H.On the classification of birds;and on the taxonomic value of the modifications of certain of the cranial bones observable in that class.Proc. Zool.Soc. Lond. 1867, 415-472 (1867).
  • 43. Ericson,P.G.P.Systematic relationships of the Palaeogene family Presbyornithidae (Aves: Anseriformes).Zool. J.Linn. Soc. 121, 429-483 (1997).
  • 44. Cooney,C. R.et al. Mega-evolutionary dynamics of the adaptive radiation of birds.Nature 542, 344-347 (2017).
  • 45. Bright, J.A., Marugan-Lobon,J., Rayfield,E. J.& Cobb,S.N. The multifactorial nature of beak and skull shape evolution in parrots and cockatoos (Psittaciformes). BMC Evol.Biol. 19, 104 (2019).
  • 46. Field,D. J.& Hsiang,A.Y.A North American stem turaco,and the complex biogeographic history of modern birds.BMC Evol. Biol. 18, 102 (2018).
  • 47. Mourer-Chauvire,C.Les oiseaux fossiles des phosphorites du Quercy (Eocene superieur a Oligocene superieur):implications paleobiogeographiques.Geobios 15, 413-426 (1982).
  • 48. Mayr,G.Two-phase extinction of "Southern Hemispheric" birds in the Cenozoic of Europe and the origin of the Neotropic avifauna.Palaeobiodivers.Palaeoenviron. 91, 325-333 (2011).
  • 49. O'Connor,J.K. & Zhou, Z. The evolution of the modern avian digestive system:insights from paravian fossils from the Yanliao and Jehol biotas.Palaeontology 63, 13-27 (2020).
  • 50. Feduccia, A. Explosive evolution in tertiary birds and mammals.Science 267, 637-638 (1995).