IMPROVING THE EFFICIENCY OF WATER FIRE EXTINGUISHING SYSTEMS OPERATION BY USING GUANIDINE POLYMERS
- 1. Cherkassy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Defense of Ukraine
- 2. National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
- 3. Odessa National Academy of Food Technologies
Description
This study has established the possibility of obtaining water extinguishing agents, which can reduce hydraulic resistance (with the Toms effect) by using guanidine derivatives.
A cationic polyhexamethylene guanidine hydrochloride surfactant with a molecular weight of 10,000–11,000 u was used for experimental study.
It has been shown that the addition of insignificant concentrations (0.03–0.290 %) of polyhexamethylene guanidine hydrochloride, which belongs to class IV of toxicity and is an effective inhibitor of biocorrosion, increases a flow rate of water fire extinguishing agent by 1.20–1.78 times when using the RSK-50 fire barrel.
We have established experimentally an increase in the flow rate of a polymer solution from drencher nozzles by 1.86–7.69 % in the concentration range (0.3–1.4 %) along the examined pipeline (1 m and 13 m). An increase in pressure by 2–6 % has been observed compared with the initial values under such conditions.
The used polymer has properties of a "biologically soft" surfactant and meets high environmental requirements of the environmental protection and rational use of natural resources. One can use it to develop formulations for environmentally acceptable water extinguishing agents and their application in firefighting practice.
The above allows us to argue that the directed use of salts of polyhexamethylene guanidine hydrochloride is possible to reduce hydraulic losses in water extinguishing systems. One can apply them to improve engineering and technical measures for preventing and responding to emergencies
Files
Improving the efficiency of water fire extinguishing systems operation by using guanidine polymers.pdf
Files
(342.7 kB)
Name | Size | Download all |
---|---|---|
md5:926b6e9c0a2b4cf428058b7ee6e6ed30
|
342.7 kB | Preview Download |
Additional details
References
- Symonenko, A. P. (2012). Improving the efficiency of firefighting equipment by applying the hydrodynamic activity of water – soluble polymer compositions. Sb. nauchn. trudov Natsional'nogo universiteta grazhdanskoy zashchity Ukrainy «Problemy pozharnoy bezopasnosti», 32, 195–206.
- Stupin, A. B., Simonenko, A. P., Aslanov, P. V., Bykovskaya, N. V. (2001). Gidrodinamicheski-aktivnye kompozitsii v pozharotushenii. Donetsk: DonGU, 149.
- Simonenko, A. P., Sobko, A. Yu., Bykovskaya, N. V., Prohorenko, S. F. (2012). Primenenie gidrodinamicheski aktivnyh kompozitsiy dlya uvelicheniya propusknoy sposobnosti kanalizatsionnyh kollektorov i sistem vodootvedeniya v chrezvychaynyh situatsiyah. Visti Avtomobilno-dorozhnoho instytutu, 2 (15), 189–194.
- Yasnyuk, T. I., Vyazkova, E. A., Anisimova, E. Y. et. al. (2018). The use of water-soluble polymers to reduce the hydraulic friction resistance. The Eurasian Scientific Journal, 10 (3).
- Xi, L. (2019). Turbulent drag reduction by polymer additives: Fundamentals and recent advances. Physics of Fluids, 31 (12), 121302. doi: https://doi.org/10.1063/1.5129619
- Voulgaropoulos, V., Zadrazil, I., Le Brun, N., Bismarck, A., Markides, C. N. (2019). On the link between experimentally‐measured turbulence quantities and polymer‐induced drag reduction in pipe flows. AIChE Journal, 65 (9). doi: https://doi.org/10.1002/aic.16662
- Zhu, L., Bai, X., Krushelnycky, E., Xi, L. (2019). Transient dynamics of turbulence growth and bursting: Effects of drag-reducing polymers. Journal of Non-Newtonian Fluid Mechanics, 266, 127–142. doi: https://doi.org/10.1016/j.jnnfm.2019.03.002
- Zhu, L., Schrobsdorff, H., Schneider, T. M., Xi, L. (2018). Distinct transition in flow statistics and vortex dynamics between low- and high-extent turbulent drag reduction in polymer fluids. Journal of Non-Newtonian Fluid Mechanics, 262, 115–130. doi: https://doi.org/10.1016/j.jnnfm.2018.03.017
- Pereira, A. S., Thompson, R. L., Mompean, G. (2019). Common features between the Newtonian laminar–turbulent transition and the viscoelastic drag-reducing turbulence. Journal of Fluid Mechanics, 877, 405–428. doi: https://doi.org/10.1017/jfm.2019.567
- Benzi, R., Ching, E. S. C. (2018). Polymers in Fluid Flows. Annual Review of Condensed Matter Physics, 9 (1), 163–181. doi: https://doi.org/10.1146/annurev-conmatphys-033117-053913
- Valiev, M. I., Zholobov, V. V., Tarnovskiy, E. I. (2013). K voprosu o mehanizme deystviya vysokomolekulyarnyh polimernyh protivoturbulentnyh prisadok. Nauka i tehnologii truboprovodnogo transporta nefti i nefteproduktov, 3 (11), 18–26.
- Orlov, O. P. (2016). Fizicheskaya priroda yavleniya umen'sheniya soprotivleniya treniya v slabyh vodnyh rastvorah polimerov. Trudy Krylovskogo gosudarstvennogo nauchnogo tsentra, 92 (376), 59–92.
- Hydroquick System. AEG & Union Carbide (German & USA).
- Kostiuk, D., Kolesnikov, D., Stas, S., Yakhno, O. (2018). Research into cavitation processes in the trapped volume of the gear pump. Eastern-European Journal of Enterprise Technologies, 4 (7 (94)), 61–66. doi: https://doi.org/10.15587/1729-4061.2018.139583
- Nadtoka, O. M., Nyzhnyk, Yu. V., Fedorova, L. M., Marievskyi, V. F., Baranova, H. I., Nyzhnyk, T. Yu. (2006). Pat. No. 79720 UA. A method for obtaining polyguanidines. No. a200610366; declareted: 29.09.2006; published: 10.07.2007, Bul. No. 10.
- Mahlovana, T. V., Nyzhnyk, T. Yu., Zhartovskyi, S. V. (2017). Ekolohichni aspekty vykorystannia huanidynovykh polimeriv v umovakh nadzvychainykh sytuatsiy. Cherkasy: vydavets FOP Hordienko Ye.I., 210.
- Vointsev, I. I., Nizhnik, T. Yu., Strikalenko, T. V., Baranova, A. I. (2018). Anticorrosive properties of disinfectant reagents based on polyhexamethylene guanidine hydrochloride. Voda: himiya i ekologiya, 10-12, 99–108.
- Voropaev, G. A., Dimitrieva, N. F., Zagumenniy, Ya. V. (2013). Structure of a turbulent boundary layer at combined use of deformable surface and small concentrated polymer additives. Prykladna hidromekhanika, 15 (2), 3–12.
- Tsukahara, T., Motozawa, M., Tsurumi, D., Kawaguchi, Y. (2013). PIV and DNS analyses of viscoelastic turbulent flows behind a rectangular orifice. International Journal of Heat and Fluid Flow, 41, 66–79. doi: https://doi.org/10.1016/j.ijheatfluidflow.2013.03.011