There is a newer version of the record available.

Published February 22, 2020 | Version v29
Preprint Open

The Complexity of Number Theory

Authors/Creators

  • 1. Joysonic

Description

The Goldbach's conjecture has been described as the most difficult problem in the history of Mathematics. This conjecture states that every even integer greater than 2 can be written as the sum of two primes. This is known as the strong Goldbach's conjecture. The conjecture that all odd numbers greater than 7 are the sum of three odd primes is known today as the weak Goldbach conjecture. A major complexity class is NSPACE(S(n)) for some S(n). We show if the weak Goldbach's conjecture is true, then the problem PRIMES is not in NSPACE(S(n)) for all S(n) = o(log n). However, if PRIMES is not in NSPACE(S(n)) for all S(n) = o(log n), then the strong Goldbach's conjecture is true or this has an infinite number of counterexamples. Since Harald Helfgott proved that the weak Goldbach's conjecture is true, then the strong Goldbach's conjecture is true or this has an infinite number of counterexamples, where the case of infinite number of counterexamples statistically seems to be unlikely. In addition, if PRIMES is not in NSPACE(S(n)) for all S(n) = o(log n), then the Beal's conjecture is true. Since the Beal's conjecture is a generalization of Fermat's Last Theorem, then this is also a simple and short proof for that Theorem.

Files

manuscript.pdf

Files (399.2 kB)

Name Size Download all
md5:381c18c33bc3ffc048a410e23d52a7c8
399.2 kB Preview Download