There is a newer version of the record available.

Published February 17, 2020 | Version v1
Dataset Open

TAU Urban Acoustic Scenes 2020 Mobile, Development dataset

  • 1. Tampere University

Contributors

Contact person:

  • 1. Tampere University

Description

TUT Urban Acoustic Scenes 2020 Mobile development dataset consists of 10-seconds audio segments from 10 acoustic scenes:

  • Airport - airport
  • Indoor shopping mall - shopping_mall
  • Metro station - metro_station
  • Pedestrian street - street_pedestrian
  • Public square - public_square
  • Street with medium level of traffic - street_traffic
  • Travelling by a tram - tram
  • Travelling by a bus - bus
  • Travelling by an underground metro - metro
  • Urban park - park

The dataset contains in total 64 hours of audio.

Files

TAU-urban-acoustic-scenes-2020-mobile-development.audio.1.zip

Files (27.4 GB)

Name Size Download all
md5:6d0700ebcfb9e6b12d32efad1fed2028
1.7 GB Preview Download
md5:1062165b25a3598f0642747109a308e5
1.7 GB Preview Download
md5:750b289b80f3a3a1ed32458e7ce59f99
1.7 GB Preview Download
md5:57e647a1988e3391296c8aa1dc97e806
1.7 GB Preview Download
md5:504b3baaf7ae288c022d430271c2a6a9
1.8 GB Preview Download
md5:191657ce56acfcb87e893befe017ecc4
1.8 GB Preview Download
md5:a2c9f5bb65a2a8b0ded5f43b225e1125
1.9 GB Preview Download
md5:1dba9bb4d53cfa6e6b424e1fd28c7013
443.4 MB Preview Download
md5:722366b35e17e5c3d2c890e92b10496c
1.8 GB Preview Download
md5:ad6979ac7c34e84efca1c1881d0d3999
1.9 GB Preview Download
md5:dcdb92a534c7bef41bbcd1673f012798
1.9 GB Preview Download
md5:790621c26bd0f5b5c0741aedcc861bb9
1.8 GB Preview Download
md5:f0cace66e7033280b69c8ab6bfa05e07
1.8 GB Preview Download
md5:543aa18b4dcc6d8ff37f1efd75d4f077
1.7 GB Preview Download
md5:ceba2fec17a888d92a7af37482bf4ac9
1.7 GB Preview Download
md5:516293ffaa3a11323d9133ee3244710c
1.8 GB Preview Download
md5:0239833f3a3b37e00d3fc8eb3a4922b2
16.5 kB Preview Download
md5:ef33bf8d127a05938bd8bbfd3edb453e
215.2 kB Preview Download

Additional details

Funding

EVERYSOUND – Computational Analysis of Everyday Soundscapes 637422
European Commission