Published December 2, 2019 | Version v1
Journal article Open

Disruptive coloration and habitat use by seahorses

Description

Duarte, Michele, Gawryszewski, Felipe M., Ramineli, Suzana, Bessa, Eduardo (2019): Disruptive coloration and habitat use by seahorses. Neotropical Ichthyology 17 (4): 1-8, DOI: 10.1590/1982-0224-20190064

Files

source.pdf

Files (4.1 MB)

Name Size Download all
md5:405640cfa08a3532b44edf0404d1bec4
4.1 MB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:4056FFCFFF8A3532B44EDF04FFD1FFC4
URL
http://publication.plazi.org/id/4056FFCFFF8A3532B44EDF04FFD1FFC4

References

  • Ahnesjo J, Forsman A. Differential habitat selection by pygmy grasshopper color morphs; interactive effects of temperature and predator avoidance. Evol Ecol. 2006; 20(3):235-57. https://doi.org/10.1007/s10682-006-6178-8
  • Belo WC, Dias GTM, Dias MS. O fundo marinho da Baia da Ilha Grande, RJ: O relevo submarino e a sedimentacao no canal central. Rev Bras Geofis. 2002; 20(1):5-15. http://dx.doi. org/10.1590/S0102-261X2002000100001
  • Carvalho LN, Zuanon J, Sazima I. The almost invisible league: crypsis and association between minute fishes and shrimps as a possible defence against visually hunting predators. Neotrop Ichthyol. 2006; 4(2):219-24. http://dx.doi.org/10.1590/ S1679-62252006000200008
  • Chen L, Wang X, Huang B. The Genus Hippocampus -a review on traditional medicinal uses, chemical constituents and pharmacological properties. J Ethnopharmacol. 2015; 162:104-11. https://doi.org/10.1016/j.jep.2014.12.032
  • Creed JC, Pires DO, Figueiredo MAO. Biodiversidade marinha da Baia da Ilha Grande. Brasilia: Ministerio do Meio Ambiente; 2007.
  • Cuthill IC, Stevens M, Sheppard J, Maddocks T, Parraga CA, Troscianko TS. Disruptive coloration and background pattern matching. Nature. 2005; 434(7029):72-74. https://doi. org/10.1038/nature03312
  • Dias TLP, Rosa IL. Habitat preferences of a seahorse species, Hippocampus reidi (Teleostei: Syngnathidae) in Brazil. Aqua. 2003; 6(4):165-76. Available from: http://www.aquaaquapress.com/pdf/6(4)_Hippocampus%20reidi.pdf
  • Duarte RC, Flores AAV. Morph-specific habitat and sex distribution in the caridean shrimp Hippolyte obliquimanus. J Mar Biol Assoc U K. 2017; 97(2):235-42. https://doi. org/10.1017/S0025315416000230
  • Duarte RC, Stevens M, Flores AAV. Shape, colour plasticity, and habitat use indicate morph-specific camouflage strategies in a marine shrimp. BMC Evol Biol. 2016; 16(218):1-15. https:// doi.org/10.1186/s12862-016-0796-8
  • Ebenstein D,Calderon C,Troncoso OP,Torres FG.Characterization of dermal plates from armored catfish Pterygoplichthys pardalis reveals sandwich-like nanocomposite structure. J Mech Behav Biomed Mater. 2015; 45:175-82. https://doi. org/10.1016/j.jmbbm.2015.02.002
  • Elias MAM, Anker A, Gawryszewski FM. Microhabitat use and body size drive the evolution of colour patterns in snapping shrimps (Decapoda: Alpheidae: Alpheus). Biol J Linn Soc Lond. 2019; 128(4):blz152. https://doi.org/10.1093/ biolinnean/blz152
  • Endler JA. Progressive background in moths, and a quantitative measure of crypsis. Biol J Linn Soc Lond. 1984; 22(3):187- 231. https://doi.org/10.1111/j.1095-8312.1984.tb01677.x
  • Figueiredo JD, Menezes NA. Manual de peixes marinhos do sudeste do Brasil. Sao Paulo: Universidade de Sao Paulo; 1985.
  • Foster SJ, Vincent ACJ. Life history and ecology of seahorses: implications for conservation and management. J Fish Biol. 2004; 65(1):1-61. https://doi.org/10.1111/j.0022- 1112.2004.00429.x
  • Freret-Meurer NV, Andreata JV, Alves MAS. Seahorse fingerprints: a new individual identification technique. Environ Biol Fish. 2013; 96(12):1399-405. https://doi. org/10.1007/s10641-013-0118-6
  • Freret-Meurer NV, Andreata JV. Field studies of a brazilian seahorse population, Hippocampus reidi Ginsburg, 1933. Braz Arch Biol Technol. 2008; 51(4):543-51. http://dx.doi. org/10.1590/S1516-89132008000400012
  • Freret-Meurer NV, Fernandez TC, Lopes DA, Vaccani AC, Okada NB. Thanatosis in the Brazilian seahorse Hippocampus reidi Ginsburg, 1933 (Teleostei: Syngnathidae). Acta Ethol. 2017; 20(1):81-84. https://doi.org/10.1007/s10211-016-0247-y
  • Fretwell SD. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheor. 1969; 19(1):45- 52. https://doi.org/10.1007/BF01601955
  • Hacker SD, Madin LP. Why habitat architecture and color are important to shrimps living in pelagic Sargassum: use of camouflage and plant-part mimicry. Mar Ecol Prog Ser. 1991; 70(2):143-55. Available from: https://www.jstor.org/ stable/24816770
  • Itoi S, Yoshikawa S, Asahina K, Suzuki M, Ishizuka K, Takimoto N, Mitsuoka R et al. Larval pufferfish protected by maternal tetrodotoxin. Toxicon. 2014; 78:35-40. https://doi. org/10.1016/j.toxicon.2013.11.003
  • Kennedy M, Gray RD. Can ecological theory predict the distribution of foraging animals? A critical analysis of experiments on the ideal free distribution. Oikos. 1993; 68(1):158-66. https://doi.org/10.2307/3545322
  • Lee HR, O'Brien KMB. Morphological and behavioral limit of visual resolution in temperate (Hippocampus abdominalis) and tropical (Hippocampus taeniopterus) seahorses. Vis Neurosci. 2011; 28(4):351-60. https://doi.org/10.1017/ S0952523811000149
  • Leone MF. Testes empiricos sobre a ocorrencia diferencial de listras em duas especies de Monodelphis (Didelphidae: Mammalia) e seu papel como coloracao disruptiva e na evasao de predadores. [Master Dissertation]. Vitoria: Universidade Federal do Espirito Santo; 2014.
  • Lourie SA, Pollom RA, Foster SJ. A global revision of the seahorses Hippocampus rafinesque 1810 (Actinopterygii: Syngnathiformes): Taxonomy and biogeography with recommendations for further research. Zootaxa. 2016; 4146(1):1-66. http://dx.doi.org/10.11646/zootaxa.4146.1.1
  • Lourie SA, Vincent ACJ, Hall HJ. Seahorses: an identification guide to the world's species and their conservation. London: Project Seahorse; 1999.
  • Loy A, Hofmann H, Cook D. Model choice and diagnostics for linear mixed-effects models using statistics on street corners. J Comp Graphic Stat. 2017; 26(3):478-92. https://doi.org/10.10 80/10618600.2017.1330207
  • Marshall NJ, Jennings K, McFarland WN, Loew ER, Losey GS. Visual biology of Hawaiian coral reef fishes. II. Colors of Hawaiian coral reef fish. Copeia. 2003; 2003(3):455-66. https://doi.org/10.1643/01-055
  • Martinez-Cardenas L, Purser GJ. Effect of tank colour on Artemia ingestion, growth and survival in cultured early juvenile potbellied seahorses (Hippocampus abdominalis). Aquaculture. 2007; 264(1-4):92-100. https://doi.org/10.1016/j. aquaculture.2006.12.045
  • Merilaita S. Crypsis through disruptive coloration in an isopod. Proc R Soc Lond B Biol Sci. 1998; 265(1401):1059-64. https:// doi.org/10.1098/rspb.1998.0399
  • Merilaita S, Lind J. Background-matching and disruptive coloration, and the evolution of cryptic coloration. Proc R Soc Lond B Biol Sci. 2005; 272(1563):665-70. https://doi. org/10.1098/rspb.2004.3000
  • Merilaita S, Tuomi J, Jormalainen V. Optimization of cryptic coloration in heterogeneous habitats. Biol J Linn Soc. 1999; 67(2):151-61. https://doi.org/10.1111/j.1095-8312.1999. tb01858.x
  • Merilaita S, Lyytinen A, Mappes J. Selection for cryptic coloration in a visually heterogeneous habitat. Proc R Soc Lond B Biol Sci. 2001; 268(1479):1925-29. https://doi.org/10.1098/ rspb.2001.1747
  • Ministerio do Meio Ambiente (MMA). Areas prioritarias para a conservacao, utilizacao sustentavel e reparticao de beneficios da biodiversidade brasileira ou areas prioritarias para a biodiversidade. Brasilia; 2003.
  • Moreau MA, Vincent ACJ. Social structure and space use in a wild population of the australian short-headed seahorse Hippocampus breviceps Peters, 1869. Mar Freshw Res. 2004; 55(3):231-39. https://doi.org/10.1071/MF03159
  • Oliveira TPR, Castro ALC, Rosa IL. Novel sex-related characteristics of the longsnout seahorse Hippocampus reidi Ginsburg, 1933. Neotrop Ichthyol. 2010; 8(2):373-78. http:// dx.doi.org/10.1590/S1679-62252010000200017
  • Perante NC, Pajaro MG, Meeuwig JJ, Vincent ACJ. Biology of a seahorse species, Hippocampus comes in the central Philippines. J Fish Biol. 2002; 60(4):821-37. https://doi. org/10.1111/j.1095-8649.2002.tb02412.x
  • Pinto-Joventino FK, Lianza S, Johnsson RMF. Pesca artesanal na Baia de Ilha Grande, no Rio de Janeiro: conflitos com unidades de conservacao e novas possibilidades de gestao. Polit Soc. 2013; 12(23):159-82. https://doi.org/10.5007/2175- 7984.2013v12n23p159
  • Qin G, Lin Q, Gu N, Lin J, Huang L. Effect of broodstock origin, background and substrate color on skin coloration of threespotted seahorses Hippocampus trimaculatus Leach, 1814. J Exp Mar Biol Ecol. 2012; 416-417:129-34. https://doi. org/10.1016/j.jembe.2012.02.007
  • Ramasamy RA, Allan BJM, McCormick MI. Plasticity of escape responses: prior predator experience enhances escape performance in a coral reef fish. PLoS ONE. 2015; 10(8):e0132790. https://doi.org/10.1371/journal.pone.0132790
  • Rosa IL, Dias TL, Baum JK. Threatened fishes of the world: Hippocampus reidi Ginsburg, 1933 (Syngnathidae). Environ Biol Fish. 2002; 64(4):378.
  • Rosa IL, Sampaio CLS, Barros AT. Collaborative monitoring of the ornamental trade of seahorses and pipefishes (Teleostei: Syngnathidae) in Brazil: Bahia State as a case study. Neotrop Ichthyol. 2006; 4(2):247-52. http://dx.doi.org/10.1590/S1679- 62252006000200010
  • Rouse GW, Stiller J, Wilson NG. First live records of the ruby seadragon (Phyllopteryx dewysea, Syngnathidae). Mar Biodivers Rec. 2017; 10(2):1-4. https://doi.org/10.1186/ s41200-016-0102-x
  • Schaefer HM, Stobbe N. Disruptive coloration provides camouflage independent of background matching. Proc R Soc Lond B Biol Sci. 2006; 273(1600):2427-32. https://doi.org/10.1098/ rspb.2006.3615
  • Segade A, Robaina L, Otero-Ferrer F, Romero JG, Dominguez LM. Effects of the diet on seahorse (Hippocampus hippocampus) growth, body colour and biochemical composition. Aquac Nutr. 2015; 21(6):807-13. https://doi.org/10.1111/anu.12202
  • Short G, Smith R, Motomura H, Harasti D, Hamilton H. Hippocampus japapigu, a new species of pygmy seahorse from Japan, with a redescription of H. pontohi (Teleostei, Syngnathidae). ZooKeys. 2018; 779:27-49. https://dx.doi. org/10.3897%2Fzookeys.779.24799
  • Silveira RB, Siccha-Ramirez R, Silva JRS, Oliveira C. Morphological and molecular evidence for the occurrence of three Hippocampus species (Teleostei: Syngnathidae) in Brazil. Zootaxa. 2014; 3861(4):317-32. http://dx.doi.org/10.11646/ zootaxa.3861.4.2
  • Stevens M. Color change, phenotypic plasticity, and camouflage. Front Ecol Evol. 2016; 4(51):1-10. https://doi.org/10.3389/ fevo.2016.00051
  • Stevens M, Cuthill IC, Windsor AMM, Walker HJ. Disruptive contrast in animal camouflage. Proc R Soc Lond B Biol Sci. 2006; 273(1600):2433-38. https://doi.org/10.1098/ rspb.2006.3614
  • Stevens M, Merilaita S. Animal camouflage: current issues and new perspectives. Philos Trans R Soc Lond B Biol Sci. 2009; 364(1516):423-27. https://doi.org/10.1098/rstb.2008.0217
  • Stevens M, Yule DH, Ruxton GD. Dazzle coloration and prey movement.Proc R Soc Lond B Biol Sci.2008; 275(1651):2639- 43. https://doi.org/10.1098/rspb.2008.0877
  • Thayer GH. Concealing-coloration in the Animal Kingdom: being a summary of Abbott H. Thayer's Discoveries. New York: Macmillan Company; 1909.
  • Van Der Laan JD, Hogeweg P. Predator-prey coevolution: interactions across different timescales. Proc R Soc Lond B Biol Sci. 1995; 259(1354):35-42. https://doi.org/10.1098/ rspb.1995.0006
  • Vincent ACJ. A role for daily greetings in maintaining seahorse pair bonds. Anim Behav. 1995; 49(1):258-60. https://doi. org/10.1016/0003-3472(95)80178-2
  • Vincent ACJ, Sadler LM. Faithful pair bonds in wild seahorses, Hippocampus whitei. Anim Behav. 1995; 50(6):1557-59. https://doi.org/10.1016/0003-3472(95)80011-5
  • Webster RJ, Hassall C, Herdman CM, Godin JGJ, Sherratt TN. Disruptive camouflage impairs object recognition. Biol Lett. 2013; 9(6):20130501. https://doi.org/10.1098/rsbl.2013.0501