Published January 20, 2020 | Version v1
Conference paper Open

The COLIBRI experimental program in the CROCUS reactor: characterization of the fuel rods oscillator

  • 1. Ecole Polytechnique Fédérale de Lausanne (EPFL); Paul Scherrer Institut (PSI)
  • 2. Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • 3. Paul Scherrer Institut (PSI)

Description

The present article presents the mechanical characterization of the fuel rods oscillator developed for the purposes of the COLIBRI experimental program in CROCUS. COLIBRI aims at investigating the radiation noise related to fuel vibrations. The main motivation is the increased amplitudes in the neutron noise distributions recorded in ex- and in-core detectors that have been observed in recent years in Siemens pre-Konvoi type of pressurized water reactors. Several potential explanations have been put forward, but no definitive conclusions could yet be drawn. Among others, changes in fuel assembly or pin vibration patterns, due to recent modifications of assembly structural designs, were pointed out as a possible cause. Computational dynamic tools are currently developed within the Horizon 2020 European project CORTEX, to help with understanding the additional noise amplitude. The COLIBRI program is used for their validation. An in-core device was designed, tested, and licensed between 2015 and 2019 for fuel rods oscillation in CROCUS, in successive steps from out-of-pile tests with dummy fuel rods to critical in-core tests. The characterization of its mechanical behavior is presented, in air and in water, and as a function of the load, for safety and experimental purposes. The device allows simultaneously oscillating up to 18 fuel rods. The maximum oscillation amplitude is 5 mm, while the maximum allowed frequency is 2 Hz, i.e. in the frequency range in which the induced neutron flux fluctuations are most pronounced in nuclear power plants.

Files

2020_Lamirand_2_EPJ_WoC_paper_V1.pdf

Files (1.3 MB)

Name Size Download all
md5:c1c04386aabf990a611c80bc4933a9a9
1.3 MB Preview Download

Additional details

Funding

CORTEX – Core monitoring techniques and experimental validation and demonstration 754316
European Commission