Published February 24, 2020
| Version v1
Journal article
Restricted
Binocular Encoding in the Damselfly Pre-motor Target Tracking System
Description
Supple, Jack A., Pinto-Benito, Daniel, Khoo, Christopher, Wardill, Trevor J., Fabian, Samuel T., Liu, Molly, Pusdekar, Siddhant, Galeano, Daniel, Pan, Jintao, Jiang, Shengdian, Wang, Yimin, Liu, Lijuan, Peng, Hanchuan, Olberg, Robert M., Gonzalez-Bellido, Paloma T. (2020): Binocular Encoding in the Damselfly Pre-motor Target Tracking System. Current Biology 30 (1): 1-16, DOI: https://doi.org/10.1016/j.cub.2019.12.031
Files
Linked records
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:FFBA851EFFE474398C40FFD0FFB7ED4F
- URL
- http://publication.plazi.org/id/FFBA851EFFE474398C40FFD0FFB7ED4F
References
- 1. Barendregt, M., Harvey, B.M., Rokers, B., and Dumoulin, S.O. (2015). Transformation from a retinal to a cyclopean representation in human visual cortex. Curr. Biol. 25, 1982-1987.
- 2. Campbell, F.W., and Green, D.G. (1965). Monocular versus binocular visual acuity. Nature 208, 191-192.
- 3. Elberger, A.J. (1989). Binocularity and single cell acuity are related in striate cortex of corpus callosum sectioned and normal cats. Exp. Brain Res. 77, 213-216.
- 4. Blake, R., Martens, W., and Di Gianfilippo, A. (1980). Reaction time as a measure of binocular interaction in human vision. Invest. Ophthalmol. Vis. Sci. 19, 930-941.
- 5. Ding, J., and Levi,D.M. (2011).Recovery of stereopsis through perceptual learning in human adults with abnormal binocular vision. Proc.Natl.Acad. Sci. USA 108, E733-E741.
- 6. Nityananda, V., and Read, J.C.A. (2017).Stereopsis in animals:evolution, function and mechanisms. J. Exp. Biol. 220, 2502-2512.
- 7. Lythgoe, J.N. (1979). Ecology of Vision (Oxford University Press).
- 8. Grimaldi,D.A., and Engel,M.S.(2005).Evolution of the Insects (Cambridge University Press).
- 9. Corbet, P.S. (1999). Dragonflies: Behaviour and Ecology of Odonata (Cornell University Press).
- 10. Olberg, R.M., Seaman, R.C., Coats, M.I., and Henry, A.F. (2007). Eye movements and target fixation during dragonfly prey-interception flights. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 193, 685-693.
- 11. Gonzalez-Bellido, P.T., Peng, H., Yang, J., Georgopoulos, A.P., and Olberg, R.M. (2013). Eight pairs of descending visual neurons in the dragonfly give wing motor centers accurate population vector of prey direction. Proc. Natl. Acad. Sci. USA 110, 696-701.
- 12. Mischiati, M., Lin, H.T., Herold, P., Imler, E., Olberg, R., and Leonardo, A. (2015). Internal models direct dragonfly interception steering. Nature 517, 333-338.
- 13. Olberg, R.M. (1986). Identified target-selective visual interneurons descending from the dragonfly brain. J. Comp. Physiol. A 159, 827-840.
- 14. Olberg, R.M. (1981). Parallel encoding of direction of wind, head, abdomen,and visual pattern movement by single interneurons in the dragonfly. J. Comp. Physiol. A 142, 27-41.
- 15. Lin, H.T., and Leonardo, A. (2017). Heuristic rules underlying dragonfly prey selection and interception. Curr. Biol. 27, 1124-1137.
- 16. O'Carroll,D.(1993).Feature-detecting neurons in dragonflies.Nature 362, 541-543.
- 17. Wiederman, S.D., and O'Carroll, D.C. (2013). Selective attention in an insect visual neuron. Curr. Biol. 23, 156-161.
- 18. Nordstrom,K., Bolzon,D.M., and O'Carroll,D.C.(2011).Spatial facilitation by a high-performance dragonfly target-detecting neuron. Biol. Lett. 7, 588-592.
- 19. Perry, M.W., and Desplan, C. (2016). Love spots. Curr. Biol. 26, R484- R485.
- 20. Frye, M.A., and Olberg, R.M. (1995). Visual receptive field properties of feature detecting neurons in the dragonfly. J. Comp. Physiol. A 177, 569-576.
- 21. Olberg, R.C. (1978). Visual and multimodal interneurons in dragonflies. PhD thesis (University of Washington).
- 22. Nel, A., Prokop, J., Pecharova, M., Engel, M.S., and Garrouste, R. (2018). Palaeozoic giant dragonflies were hawker predators. Sci. Rep. 8, 12141.
- 23. Bechly, G., Brauckmann, C., Zessin, W., and Groning, E. (2001). New results concerning the morphology of the most ancient dragonflies (Insecta: Odonatoptera) from the Namurian of Hagen-Vorhalle (Germany). J. Zool. Syst. Evol. Res. 39, 209-226.
- 24. Horridge, G.A. (1978). The separation of visual axes in apposition compound eyes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 285, 1-59.
- Horridge, G.A. (1978). The separation of visual axes in apposition compound eyes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 285, 1-59.
- 25. von Reyn, C.R., Breads, P., Peek, M.Y., Zheng, G.Z., Williamson, W.R., Yee,A.L., Leonardo,A.,and Card,G.M. (2014).A spike-timing mechanism for action selection. Nat. Neurosci. 17, 962-970.
- von Reyn, C.R., Breads, P., Peek, M.Y., Zheng, G.Z., Williamson, W.R., Yee,A.L., Leonardo,A.,and Card,G.M. (2014).A spike-timing mechanism for action selection. Nat. Neurosci. 17, 962-970.
- 26. Ruppell, G. (1999). Prey capture flight of Calopteryx haemorrhoidalis (Vander Linden) (Zygoptera:Calopterygidae).Int.J. Odonatol.2, 123-131.
- Ruppell, G. (1999). Prey capture flight of Calopteryx haemorrhoidalis (Vander Linden) (Zygoptera:Calopterygidae).Int.J. Odonatol.2, 123-131.
- 27. Ito, K., Shinomiya, K., Ito, M., Armstrong, J.D., Boyan, G., Hartenstein, V., Harzsch, S., Heisenberg, M., Homberg, U., Jenett, A., et al.; Insect Brain Name Working Group (2014). A systematic nomenclature for the insect brain. Neuron 81, 755-765.
- Ito, K., Shinomiya, K., Ito, M., Armstrong, J.D., Boyan, G., Hartenstein, V., Harzsch, S., Heisenberg, M., Homberg, U., Jenett, A., et al.; Insect Brain Name Working Group (2014). A systematic nomenclature for the insect brain. Neuron 81, 755-765.
- 28. Zhou, J., Clavagnier, S., and Hess, R.F. (2013). Short-term monocular deprivation strengthens the patched eye's contribution to binocular combination. J. Vis. 13, 12.
- 29. Wakeling, J., and Ellington, C. (1997). Dragonfly flight.II. Velocities,accelerations and kinematics of flapping flight. J. Exp. Biol. 200, 557-582.
- 30. Walguarnery, J.W., Butler, M.A., and Schroeder, R. (2009). Visual Target Detection in Damselflies (University of Hawaii, Honolulu Department of Zoology).
- 31. Bidaye,S.S., Bockemuhl, T., and Buschges,A.(2018).Six-legged walking in insects: how CPGs, peripheral feedback, and descending signals generate coordinated and adaptive motor rhythms. J. Neurophysiol. 119, 459-475.
- 32. Labhart, T., and Nilsson, D.E. (1995). The dorsal eye of the dragonfly Sympetrum: specializations for prey detection against the blue sky. J. Comp. Physiol. A 176, 437-453.
- 33. Wardill,T.J., Fabian,S.T.,Pettigrew,A.C., Stavenga,D.G., Nordstrom,K., and Gonzalez-Bellido, P.T. (2017). A novel interception strategy in a miniature robber fly with extreme visual acuity. Curr. Biol. 27, 854-859.
- 34. Barros-Pita,J.C., and Maldonado,H. (1970).A fovea in the praying mantis eye. Z. Vgl. Physiol. 67, 79-92.
- 35. Krapp, H.G., Hengstenberg, R., and Egelhaaf, M. (2001). Binocular contributions to optic flow processing in the fly visual system. J. Neurophysiol. 85, 724-734.
- 36. Hennig, P., Kern, R., and Egelhaaf, M. (2011). Binocular integration of visual information: a model study on naturalistic optic flow processing. Front. Neural Circuits 5, 4.
- 37. Farrow,K.,Haag,J., and Borst,A.(2006).Nonlinear,binocular interactions underlying flow field selectivity of a motion-sensitive neuron. Nat. Neurosci. 9, 1312-1320.
- 38. Wertz, A., Borst,A., and Haag,J. (2008).Nonlinear integration of binocular optic flow by DNOVS2, a descending neuron of the fly. J. Neurosci. 28, 3131-3140.
- 39. Wertz, A., Haag, J., and Borst, A. (2009). Local and global motion preferences in descending neurons of the fly. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 195, 1107-1120.
- 40. Huston, S.J., and Krapp,H.G. (2008).Visuomotor transformation in the fly gaze stabilization system. PLoS Biol. 6, e173.
- 41. Scarano,F., Sztarker,J., Medan,V.,Beron de Astrada,M., and Tomsic,D. (2018). Binocular neuronal processing of object motion in an arthropod. J. Neurosci. 38, 6933-6948.
- 42. Rosner, R., von Hadeln, J., Tarawneh, G., and Read, J.C.A. (2019). A neuronal correlate of insect stereopsis. Nat. Commun. 10, 2845.
- 43. Klink, P.C., Brascamp, J.W., Blake, R., and van Wezel, R.J.A. (2010). Experience-driven plasticity in binocular vision.Curr. Biol. 20, 1464-1469.
- 44. Marder, E., and Goaillard, J.M. (2006). Variability, compensation and homeostasis in neuron and network function. Nat. Rev. Neurosci. 7, 563-574.
- 45. Golowasch, J., Casey, M., Abbott, L.F., and Marder, E. (1999). Network stability from activity-dependent regulation of neuronal conductances. Neural Comput. 11, 1079-1096.
- 46. Geurten, B.R.H., Nordstrom, K., Sprayberry, J.D.H., Bolzon, D.M., and O'Carroll, D.C. (2007). Neural mechanisms underlying target detection in a dragonfly centrifugal neuron. J. Exp. Biol. 210, 3277-3284.
- 47. Wardill, T.J., Knowles, K., Barlow, L., Tapia, G., Nordstrom, K., Olberg, R.M., and Gonzalez-Bellido,P.T.(2015).The killer fly hunger games:target size and speed predict decision to pursuit. Brain Behav. Evol. 86, 28-37.
- 48. Gengs, C., Leung, H.T., Skingsley, D.R., Iovchev, M.I., Yin, Z., Semenov, E.P., Burg, M.G., Hardie, R.C., and Pak, W.L. (2002). The target of Drosophila photoreceptor synaptic transmission is a histamine-gated chloride channel encoded by ort (hclA). J. Biol. Chem. 277, 42113-42120.
- 49. Gonzalez-Bellido,P.T., and Wardill, T.J. (2012).Labeling and confocal imaging of neurons in thick invertebrate tissue samples. Cold Spring Harb. Protoc. 2012, 969-983.
- 50. Preibisch, S., Saalfeld, S., and Tomancak, P. (2009). Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463-1465.
- 51. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676-682.
- 52. Peng, H., Bria, A., Zhou, Z., Iannello, G., and Long, F. (2014). Extensible visualization and analysis for multidimensional images using Vaa3D. Nat. Protoc. 9, 193-208.
- 53. Bria, A., Iannello, G., Onofri, L., and Peng, H. (2016). TeraFly: real-time three-dimensional visualization and annotation of terabytes of multidimensional volumetric images. Nat. Methods 13, 192-194.
- 54. Wang, Y., Li, Q., Liu, L., Zhou, Z., Ruan, Z., Kong, L., Li, Y., Wang, Y., Zhong,N., Chai,R.,et al.(2019).TeraVR empowers precise reconstruction of complete 3-D neuronal morphology in the whole brain. Nat. Commun. 10, 3474.