Published November 30, 2019 | Version v1
Journal article Open

CYCLOIDAL GAIT WITH DOUBLE SUPPORT PHASE FOR THE NAO HUMANOID ROBOT

  • 1. Tecnologico Nacional de Mexico / Instituto Tecnologico de la Laguna
  • 2. Universidad Autonoma de Coahuila

Description

The commercial Nao humanoid robot has 11 DOF in legs. Even if these legs include 12 revolute joints, only 11 actuators are employed to control the walking of the robot. Under such conditions, the mobility of the pelvis and that of the oscillating foot are mutually constrained at each step. Besides, the original gait provided by the manufacturer company of the Nao employs only single support phases during the walking. Because of both issues, the reduced mobility in legs and the use of only single support phases, the stability of the walking is affected. To contribute to improving such stability, in this paper an approach is proposed that incorporates a double support phase and a gait based on cycloidal time functions for motions of the pelvis and those of the oscillating foot. To assess the stability of the walking an index is applied, which is based on the notion of zero-moment point (ZMP) of the static foot at each step. Results of experimental tests show that the proposed gait enhances the stability of the robot during the walking.

Files

CYCLOIDAL GAIT WITH DOUBLE SUPPORT PHASE FOR THE NAO HUMANOID ROBOT.pdf

Additional details

References

  • Honda. Asimo the world's most advanced humanoid robot. Available at: http://asimo.honda.com/asimo-specs/
  • Zhou, C., Li, Z., Wang, X., Tsagarakis, N., Caldwell, D. (2015). Stabilization of bipedal walking based on compliance control. Autonomous Robots, 40(6), 1041–1057. doi: https://doi.org/10.1007/s10514-015-9507-3
  • Radford, N. A., Strawser, P., Hambuchen, K., Mehling, J. S., Verdeyen, W. K., Donnan, A. S. et. al. (2015). Valkyrie: NASA's First Bipedal Humanoid Robot. Journal of Field Robotics, 32 (3), 397–419. doi: https://doi.org/10.1002/rob.21560
  • Kaneko, K., Kaminaga, H., Sakaguchi, T., Kajita, S., Morisawa, M., Kumagai, I., Kanehiro, F. (2019). Humanoid Robot HRP-5P: An Electrically Actuated Humanoid Robot With High-Power and Wide-Range Joints. IEEE Robotics and Automation Letters, 4 (2), 1431–1438. doi: https://doi.org/10.1109/lra.2019.2896465
  • Tsagarakis, N. G., Caldwell, D. G., Negrello, F., Choi, W., Baccelliere, L., Loc, V. G. et. al. (2017). WALK-MAN: A High-Performance Humanoid Platform for Realistic Environments. Journal of Field Robotics, 34 (7), 1225–1259. doi: https://doi.org/10.1002/rob.21702
  • Sugihara, T., Nakamura, Y. (2005). A Fast Online Gait Planning with Boundary Condition Relaxation for Humanoid Robots. Proceedings of the 2005 IEEE International Conference on Robotics and Automation. doi: https://doi.org/10.1109/robot.2005.1570136
  • De Magistris, G., Pajon, A., Miossec, S., Kheddar, A. (2017). Optimized humanoid walking with soft soles. Robotics and Autonomous Systems, 95, 52–63. doi: https://doi.org/10.1016/j.robot.2017.05.006
  • Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P. et. al. (2008). The NAO humanoid: a combination of performance and affordability. arXiv e-Journal, Cornell University. Available at: https://arxiv.org/pdf/0807.3223v1.pdf
  • Kajita, S., Hirukawa, H., Harada, K., Yokoi, K. (2014). Introduction to Humanoid Robotics. Springer Tracts in Advanced Robotics. doi: https://doi.org/10.1007/978-3-642-54536-8
  • Fierro, J. E., Alfonso Pamanes, J., Moreno, H. A., Nunez, V. (2017). On the Constrained Walking of the NAO Humanoid Robot. Lecture Notes in Networks and Systems, 13–29. doi: https://doi.org/10.1007/978-3-319-54377-2_2
  • Liu, J., Urbann, O. (2016). Bipedal walking with dynamic balance that involves three-dimensional upper body motion. Robotics and Autonomous Systems, 77, 39–54. doi: https://doi.org/10.1016/j.robot.2015.12.002
  • Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H. (2003). Biped walking pattern generation by using preview control of zero-moment point. 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422). doi: https://doi.org/10.1109/robot.2003.1241826
  • Pot, E., Monceaux, J., Gelin, R., Maisonnier, B. (2009). Choregraphe: a graphical tool for humanoid robot programming. RO-MAN 2009 - The 18th IEEE International Symposium on Robot and Human Interactive Communication. doi: https://doi.org/10.1109/roman.2009.5326209
  • Webots: Open Source Robot Simulator. Available at: https://cyberbotics.com/
  • Arias, L., Olvera, L., Pamanes, J. A., Nunez, J. V. (2014). 3D Walking cycloidal pattern for humanoids and its application to the Bioloid robot. Iberoamerican Journal of Mechanical Engineering, 18 (1), 03–22.
  • Dombre, E., Khalil, W. (Eds.) (2007). Modeling, Performance Analysis and Control of Robot Manipulators. John Wiley & Sons. doi: https://doi.org/10.1002/9780470612286
  • Fierro, J. E., Pamanes, J. A., Arias, L. E. (2015). Walking of the humanoid robot Nao based on cycloidal motions. Proceedings of XXI International Annual Congress of the SOMIM, Mexican Society of Mechanical Engineering.
  • Vukobratović, M., Borovac, B., Surla, D., Stokić, D. (1990). Biped Locomotion. Springer. doi: https://doi.org/10.1007/978-3-642-83006-8
  • Ren, L., Jones, R. K., Howard, D. (2007). Predictive modelling of human walking over a complete gait cycle. Journal of Biomechanics, 40 (7), 1567–1574. doi: https://doi.org/10.1016/j.jbiomech.2006.07.017
  • Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H. (2001). The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180). doi: https://doi.org/10.1109/iros.2001.973365