Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published December 31, 2019 | Version v1
Journal article Open

DEVELOPMENT OF ENGOBE COATINGS BASED ON ALKALINE KAOLINS

  • 1. Ukrainian State University of Chemical Technology
  • 2. Kyiv National University of Civil Engineering and Architecture
  • 3. Sumy National Agrarian University

Description

The properties of alkaline kaolins as promising raw materials during manufacturing engobe coatings for construction ceramics were studied. The chemical and mineralogical composition and peculiarities of thermal transformations of kaolins were determined; the compositions of engobe coatings were developed, their rheological properties were studied and physical and ceramic indicators after annealing were determined; the peculiarities of the formation of the coating structure were established.

The relevance of expansion of the raw material base is very high, since existing formulations of ceramic masses and coatings include mainly high-quality clays, kaolins, feldspars, quartz sands and others. Natural supplies of such raw materials are getting rapidly exhausted, which negatively affects the results of production. Thus, the search for alternative raw materials should take into account not only its availability, but also the ability to ensure high quality of ceramic products.

The research results revealed that alkaline kaolins are complex raw material containing kaolinite, quartz and feldspar minerals (microcline or albite), that is why they can replace the listed materials that are introduced into the composition of engobes by separate components. To correct the rheological properties of the developed engobe coatings, it is possible to use traditional electrolytes – rheotan and liquid glass – in the amount of up to 0.7 % by weight. During the thermal treatment, alkaline kaolins sinter actively at the temperatures of 1,100–1,150 °C and contribute to the intensive formation of the strong stone-like engobe layer with water absorption of 3–6 % on the product surface. This coating, in addition to creating a decorative effect, increases the durability of construction products on average by 30–35 %.

The obtained data have both scientific and practical significance, as they allowed substantiating the expediency of using alkaline kaolins as complex raw material in the production of engobe ceramics. This makes it possible to reduce the number of separate components in the composition of coating and to intensify sintering of engobe, which generally leads to the improvement of product quality

Files

Development of engobe coatings based on alkaline kaolins.pdf

Files (1.6 MB)

Additional details

References

  • Maia de Souza, D., Lafontaine, M., Charron-Doucet, F., Chappert, B., Kicak, K., Duarte, F., Lima, L. (2016). Comparative life cycle assessment of ceramic brick, concrete brick and cast-in-place reinforced concrete exterior walls. Journal of Cleaner Production, 137, 70–82. doi: https://doi.org/10.1016/j.jclepro.2016.07.069
  • Koleda, V. V., Mikhailyuta, E. S., Alekseev, E. V., Tsybul'ko, É. S. (2009). Technological particularities of clinker brick production. Glass and Ceramics, 66 (3-4), 132–135. doi: https://doi.org/10.1007/s10717-009-9129-3
  • Ryshchenko, M. I., Fedorenko, E. Y., Chirkina, M. A., Karyakina, É. L., Zozulya, S. A. (2009). Microstructure and properties of lower-temperature porcelain. Glass and Ceramics, 66 (11-12), 393–396. doi: https://doi.org/10.1007/s10717-010-9209-4
  • Khomenko, E. S., Koleda, V. V., Mirshavka, O. A., Ripak, V. R. (2014). Recycling Wastes from Ozokerite Production in Large-Tonnage Energy-Conserving Technology for Fabricating Construction Ceramic. Glass and Ceramics, 71 (3-4), 124–127. doi: https://doi.org/10.1007/s10717-014-9633-y
  • Ferrari, S., Gualtieri, A. (2006). The use of illitic clays in the production of stoneware tile ceramics. Applied Clay Science, 32 (1-2), 73–81. doi: https://doi.org/10.1016/j.clay.2005.10.001
  • Magagnin, D., dos Santos, C. M. F., Wanderlind, A., Jiusti, J., De Noni, A. (2014). Effect of kaolinite, illite and talc on the processing properties and mullite content of porcelain stoneware tiles. Materials Science and Engineering: A, 618, 533–539. doi: https://doi.org/10.1016/j.msea.2014.09.049
  • Dondi, M. (2018). Feldspathic fluxes for ceramics: Sources, production trends and technological value. Resources, Conservation and Recycling, 133, 191–205. doi: https://doi.org/10.1016/j.resconrec.2018.02.027
  • Marinoni, N., D'Alessio, D., Diella, V., Pavese, A., Francescon, F. (2013). Effects of soda–lime–silica waste glass on mullite formation kinetics and micro-structures development in vitreous ceramics. Journal of Environmental Management, 124, 100–107. doi: https://doi.org/10.1016/j.jenvman.2013.02.048
  • Silva, R. V., de Brito, J., Lye, C. Q., Dhir, R. K. (2017). The role of glass waste in the production of ceramic-based products and other applications: A review. Journal of Cleaner Production, 167, 346–364. doi: https://doi.org/10.1016/j.jclepro.2017.08.185
  • Taboada, J., Vaamonde, A., Saavedra, A., Ordóñez, C. (2002). Geostatistical study of the feldspar content and quality of a granite deposit. Engineering Geology, 65 (4), 285–292. doi: https://doi.org/10.1016/s0013-7952(01)00138-7
  • Dal Bó, M., Bernardin, A. M., Hotza, D. (2014). Formulation of ceramic engobes with recycled glass using mixture design. Journal of Cleaner Production, 69, 243–249. doi: https://doi.org/10.1016/j.jclepro.2014.01.088
  • Pavlunenko, L. E. (2010). Alkali kaolins of Ukraine – complex raw materials for the ceramics industry. Glass and Ceramics, 67 (5-6), 190–192. doi: https://doi.org/10.1007/s10717-010-9260-1
  • Sal'nik, V. G., Sviderskii, V. A., Chernyak, L. P. (2009). Expansion of the raw materials base for the production of sanitary ware ceramics. Glass and Ceramics, 66 (1-2), 34–39. doi: https://doi.org/10.1007/s10717-009-9118-6
  • Gvozdkova, N. S., Belostotskaya, N. S., Grum-Grzhimailo, O. S. (1983). Unbeneficiated alkaline kaolins in the production of sanitaryware. Glass and Ceramics, 40 (4), 193–195. doi: https://doi.org/10.1007/bf00701824
  • Kato, T., Ohashi, K., Fuji, M., Takahashi, M. (2008). Water absorption and retention of porous ceramics fabricated by waste resources. Journal of the Ceramic Society of Japan, 116 (1350), 212–215. doi: https://doi.org/10.2109/jcersj2.116.212
  • Khomenko, O., Sribniak, N., Dushyn, V., Shushkevych, V. (2018). Analysis of the interaction between properties and microstructure of construction ceramics. Eastern-European Journal of Enterprise Technologies, 4 (6 (94)), 16–25. doi: https://doi.org/10.15587/1729-4061.2018.140571
  • Fedorenko, E. Y., Ryshchenko, M. I., Daineko, E. B., Chirkina, M. A. (2013). Energy-saving technology for household porcelain. Glass and Ceramics, 70 (5-6), 219–222. doi: https://doi.org/10.1007/s10717-013-9547-0
  • Khomenko, O., Datsenko, B., Sribniak, N., Zaichuk, O., Nahornyi, M. (2019). Development of the technology for obtaining engobed construction articles with the "antiquity" effect. Eastern-European Journal of Enterprise Technologies, 5 (6 (101)), 6–13. doi: https://doi.org/10.15587/1729-4061.2019.180367
  • Hong, S.-H., Messing, G. L. (2005). Mullite Transformation Kinetics in P2O5-, TiO2-, and B2O3-Doped Aluminosilicate Gels. Journal of the American Ceramic Society, 80 (6), 1551–1559. doi: https://doi.org/10.1111/j.1151-2916.1997.tb03015.x
  • Moroz, B. I., Datsenko, B. M., Kolesnikova, I. V. (1984). Linear expansion of argillaceous mineral compositions. Glass and Ceramics, 41 (11), 505–508. doi: https://doi.org/10.1007/bf00704679