Published January 1, 2015 | Version v1
Conference paper Open

Knowledge discovery in big data: Challenges due to big data in the process of knowledge acquisition using the example of CRISP-DM,Herausforderungen durch big data im prozess der Wissensgewinnung am Beispiel des CRISP-DM

Description

Der Prozess valide, neuartige, potenziell nutzbare und verständliche Muster in Daten zu finden, wird als Knowledge Discovery in Database Prozess bezeichnet (KDD-Prozess). Die diesem Prozess zu Grunde liegende Datenbasis unterliegt einem ständigen Wandel. Doug Laney erkannte die Eigenschaften Volume, Variety und Velocity als neue Herausforderungen für IT- Organisationen. Heute werden diese Herausforderungen unter dem Begriff Big Data zusammengefasst. Die Auswirkungen von Big Data auf den KDD-Prozess sind bisher unzureichend untersucht. Ziel dieser Arbeit war es, die Herausforderungen durch Big Data am Beispiel des CRISP-DM, eines der am meisten genutzten KDD-Prozessmodelle, zu analysieren. Durch ein systematisches Literaturreview wurden elementare Herausforderungen identifiziert und den Prozessschritten des Prozessmodells zugeordnet. Die Ergebnisse konnten mittels Experteninterviews verifiziert werden. Neben der Identifikation zentraler Herausforderungen wurde deutlich, dass CRISP-DM bei der Analyse von Big Data Gültigkeit hat, aber zentrale Herausforderungen, vor allen in den Phasen der Datenvorverarbeitung, beachtet werden müssen.

Files

article.pdf

Files (187.7 kB)

Name Size Download all
md5:c9696ba2b6848e8de2f5a9197679b119
187.7 kB Preview Download