Dataset Open Access

Reliance on Science in Patenting

Marx, Matt; Aaron Fuegi

This dataset contains citations from worldwide patents to scientific articles.  If you use the data, please cite this paper: Marx, Matt and Aaron Fuegi, "Reliance on Science: Worldwide Front-Page Patent Citations to Scientific Articles" Forthcoming in Strategic Management Journal. (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3331686). 

There are two "flavors" of matches: linking to the Microsoft Academic Graph (_pcs_mag.tsv), and to PubMed (_pcs_pubmed.tsv). Each citation to science has the patent number, paper ID for MAG or PubMed, applicant/examiner indicator, and a confidence score (1-10); _data_description.pdf has full details.

We also have a beta release of matches from the body text of USPTO patents since patent #1 in 1836. The files _pcs_mag_bodytextbeta.tsv and _pcs_pubmed_bodytextbeta.tsv add a field indicating whether the citation appeared on the front page, in the body text, or in both.

The remaining files redistribute the Microsoft Academic Graph, carving up the original files into smaller, variable-specific files. There are also extensions including journal impact factor and high-level technical classifications. If you use them, please cite the following article: Sinha, A, et al. 2015. Overview of Microsoft Academic Service (MAS) and Applications. In Proceedings of the 24th International Conference on World Wide Web (WWW ’15 Companion). ACM, New York, NY, USA, 243-246.

  • The PubMed linkages are publicly available without any licensing restrictions. The MAG linkages are subject to the Open Data Commons Attribution license (ODC-By), so you can use them for anything as long as you cite us.
  • Questions & feedback to support@relianceonscience.org. 
  • Join our listserv by sending a plain text email to majordomo@bu.edu with "subscribe relianceonscience-l" in the body. 
  • Source code is available at https://github.com/mattmarx/reliance_on_science.

This computational work was performed on the Boston University Shared Computing Cluster.

Files (44.0 GB)
Name Size
__datadescription.pdf
md5:7e401c6b9fce99b4cd9453361db39fb7
347.6 kB Download
_pcs_mag.tsv
md5:12afea9b677e5f2a0d882504610a82eb
621.4 MB Download
_pcs_mag_bodytextbeta.tsv
md5:fab932b4551a9b97b842d9b67e9b1d10
1.1 GB Download
_pcs_pubmed.tsv
md5:c5413540b88629e447c471e1c689f154
273.0 MB Download
_pcs_pubmed_bodytextbeta.tsv
md5:033f9f22989a1ff5115753d3dd509474
461.2 MB Download
authoridname_normalized.zip
md5:0917e7304059b52619782aa4a5f1f24a
2.8 GB Download
authoridname_raw.zip
md5:9e35a6df4f3f6b0fe525eed10afae3d3
3.0 GB Download
conferenceidname.zip
md5:f8501b603ac284a7c168d72a1511ad36
78.9 kB Download
fieldidname.zip
md5:a68b721d656a7be3ca6efb677d0a39b0
4.2 MB Download
intlpatfamily.zip
md5:5bb26fd59a0f9b9e2a44a4a124d44b6c
1.0 GB Download
jcif.zip
md5:c2f351238565d2216136aeaacdf55914
5.2 MB Download
jif.zip
md5:7c66b0a4d51721179ce103ce9fdb35c9
8.1 MB Download
journalidnameissn.zip
md5:4fb35d70897e46a5b3f1ac9a723c095a
1.3 MB Download
magfield_oecd_wos_crosswalk.zip
md5:bbe297e3f6a71b79d3b754ab00c3eba0
2.2 GB Download
paperauthoridaffiliationname.zip
md5:3d7dbb590fa0f834a938e3897b71f4f5
4.3 GB Download
paperauthororder.zip
md5:9705a0dc6d517b2336ecc148ba591982
3.5 GB Download
papercitations.zip
md5:84c293aba31f57bbb85d2e6d5f65dfce
7.8 GB Download
paperconferenceid.zip
md5:cfde2972be81f7db051edc37e903ac91
448.7 MB Download
paperdoi.zip
md5:ae6a01a43054910834667f6763c4b13e
1.3 GB Download
paperfieldid.zip
md5:78e5e3e144a42e8b22bc1f85c2b8ed3e
5.7 GB Download
paperjournalid.zip
md5:d9a425c7c183d3a12762d0bf1ced17f2
807.1 MB Download
papertitle.zip
md5:95c371e6e21169c13e1c5b3e6b7b8aab
6.9 GB Download
papervolisspages.zip
md5:43535c579a791b6f07d11b1c3c381c4f
1.1 GB Download
paperyear.zip
md5:d0067ff44ce5aee7db1be8e51398f950
620.2 MB Download
  • Marx, Matt and Aaron Fuegi, "Reliance on Science in Patenting: USPTO Front-Page Citations to Scientific Articles" (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3331686)

  • Sinha, Arnab, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June (Paul) Hsu, and Kuansan Wang. 2015. An Overview of Microsoft Academic Service (MAS) and Applications. In Proceedings of the 24th International Conference on World Wide Web (WWW '15 Companion). ACM, New York, NY, USA, 243-246

7,338
6,182
views
downloads
All versions This version
Views 7,338810
Downloads 6,182529
Data volume 9.2 TB563.3 GB
Unique views 5,988671
Unique downloads 2,990297

Share

Cite as