Published May 23, 2016 | Version v1
Journal article Open

Thermally Induced Silane Dehydrocoupling on Silicon Nanostructures

Description

Organic trihydridosilanes can be grafted to hydrogen-terminated porous Si nanostructures with no catalyst. The reaction proceeds efficiently at 80 °C, and it shows little sensitivity to air or water impurities. The modified surfaces are stable to corrosive aqueous solutions and common organic solvents. Octadecylsilane H3 Si(CH2 )17 CH3 , and functional silanes H3 Si(CH2 )11 Br, H3 Si(CH2 )9 CH=CH2 , and H3 Si(CH2 )2 (CF2 )5 CF3 are readily grafted. When performed on a mesoporous Si wafer, the perfluoro reagent yields a superhydrophobic surface (contact angle 151°). The bromo-derivative is converted to azide, amine, or alkyne functional surfaces via standard transformations, and the utility of the method is demonstrated by loading of the antibiotic ciprofloxaxin (35 % by mass). When intrinsically photoluminescent porous Si films or nanoparticles are used, photoluminescence is retained in the grafted products, indicating that the chemistry does not introduce substantial nonradiative surface traps.

Files

Thermally Induced Silane Dehydrocoupling on Silicon Nanostructures.pdf