Fast open modification spectral library searching through approximate nearest neighbor indexing
- 1. Department of Mathematics and Computer Science, University of Antwerp, 2020 Antwerp, Belgium
- 2. Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
Description
Open modification searching (OMS) is a powerful search strategy that identifies peptides carrying any type of modification by allowing a modified spectrum to match against its unmodified variant by using a very wide precursor mass window. A drawback of this strategy, however, is that it leads to a large increase in search time. Although performing an open search can be done using existing spectral library search engines by simply setting a wide precursor mass window, none of these tools have been optimized for OMS, leading to excessive runtimes and suboptimal identification results. We present the ANN-SoLo tool for fast and accurate open spectral library searching. ANN-SoLo uses approximate nearest neighbor indexing to speed up OMS by selecting only a limited number of the most relevant library spectra to compare to an unknown query spectrum. This approach is combined with a cascade search strategy to maximize the number of identified unmodified and modified spectra while strictly controlling the false discovery rate as well as a shifted dot product score to sensitively match modified spectra to their unmodified counterparts. ANN-SoLo achieves state-of-the-art performance in terms of speed and the number of identifications. On a previously published human cell line data set, ANN-SoLo confidently identifies more spectra than SpectraST or MSFragger and achieves a speedup of an order of magnitude compared with SpectraST. ANN-SoLo is implemented in Python and C++. It is freely available under the Apache 2.0 license at https://github.com/bittremieux/ANN-SoLo.
This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in the Journal of Proteome Research, copyright © American Chemical Society after peer review. To access the final edited and published work see https://pubs.acs.org/articlesonrequest/AOR-Y7WnRgcWqx8vq5BR8gUu.
Files
Bittremieux2018.pdf
Files
(349.0 kB)
Name | Size | Download all |
---|---|---|
md5:c6b5c8a5059989b585ade5f938ecb568
|
349.0 kB | Preview Download |