Pythia/Herwig + Delphes Jet Datasets for OmniFold Unfolding
- 1. Google
- 2. MIT
- 3. LBL
Description
Datasets of QCD jets used for studying unfolding in OmniFold: A Method to Simultaneously Unfold All Observables. Four different datasets are present:
- Herwig 7.1.5 with the default tune
- Pythia 8.243 with tune 21 (ATLAS A14 central tune with NNPDF2.3LO)
- Pythia 8.243 with tune 25 (ATLAS A14 variation 2+ of tune 21)
- Pythia 8.243 with tune 26 (ATLAS A14 variation 2- of tune 21)
\(Z \) + jet events (with the \(Z \) set to be stable) were generated for each of the above generator/tune pairs with the \(Z\) boson \(\hat p_{T}^\text{min}>150\,\text{GeV} \) and \(\sqrt{s}=14\,\text{TeV}\). Events were then passed through the Delphes 3.4.2 fast detector simulation of the CMS detector. Jets with radius parameter \(R=0.4\) were found with the anti-\(k_T\) algorithm at both particle level ("gen"), where all non-neutrino, non-\(Z\) particle are used, and detector level ("sim"), where reconstructed energy flow objects (tracks, electromagnetic calorimeter cells, and hadronic calorimeter cells) are used. Only jets with transverse momentum greater than \(10\,\text{GeV}\) are kept (note that sim jets have a simple jet energy correction applied by Delphes). The hardest jet from events with a \(Z\) boson with a final transverse momentum of \(200\,\text{GeV}\) or greater are kept, yielding approximately 1.6 million jets at both gen-level and sim-level for each generator/tune pair.
Each zipped NumPy file consists of several arrays, the names of which begin with either 'gen_' or 'sim_' depending on which set of jets they correspond to. The name of each array ends in a key word indicating what it contains. With the exception of 'gen_Zs' (which contains the \((p_T,\,y,\,\phi)\) of the final \(Z\) boson), there is both a gen and sim version of each array. The included arrays are (listed by their key words):
- 'jets' - The jet axis four vector, as \((p_T^\text{jet},\,y^\text{jet},\,\phi^\text{jet},\,m^\text{jet})\) where \(y^\text{jet}\) is the jet rapidity, \(\phi^\text{jet}\) is the jet azimuthal angle, and \(m^\text{jet}\) is the jet mass.
- 'particles' - The (rescaled, translated) constituents of the jets as \((p_T/100,\,y-y^\text{jet},\,\phi-\phi^\text{jet},\,f_\text{PID})\) where \(f_\text{PID}\) is a small float corresponding to the PDG ID of the particle. The PIDs are remapped according to \(22\to0.0,\,211\to0.1,\,-211\to0.2,\) \(130\to0.3,\,11\to0.4,\,-11\to0.5,\,13\to0.6,\,-13\to0.7,\,321\to0.8,\,-321\to0.9,\) \(2212\to1.0,\,-2212\to1.1,\,2112\to1.2,\,-2112\to1.3\). Note that ECAL cells are treated as photons (id 22) and HCAL cells are treated as \(K_L^0\) (id 130).
- 'mults' - The constituent multiplicity of the jet.
- 'lhas' - The Les Houches (\(\beta=1/2\)) angularity.
- 'widths' - The jet width (\(\beta=1\) angularity).
- 'ang2s' - The \(\beta=2\) angularity (note that this is very similar to the jet mass, but does not depend on particle masses).
- 'tau2s' - The 2-subjettiness with \(\beta=1\).
- 'sdms' - The groomed mass with Soft Drop parameters \(z_\text{cut}=0.1\) and \(\beta=0\).
- 'zgs' - The groomed momentum fraction (same Soft Drop parameters as above).
If you use this dataset, please cite this Zenodo record as well as the corresponding paper:
- A. Andreassen, P. T. Komiske, E. M. Metodiev, B. Nachman, J. Thaler, OmniFold: A Method to Simultaneously Unfold All Observables, arXiv:1911.09107.
The datasets can be downloaded and read into python automatically using the EnergyFlow Python package.
Files
Files
(6.7 GB)
Name | Size | Download all |
---|---|---|
md5:3aba0470ce232c6ad9a091aaacb675d7
|
103.6 MB | Download |
md5:fdf60daa28b0a8f16d81c1ea3ff654a4
|
103.0 MB | Download |
md5:571f91d7230d7972baa02c99cae07a47
|
104.2 MB | Download |
md5:4a68e9acf568c23949f063f161a8aaed
|
103.2 MB | Download |
md5:2ad05c3339670c290d831a6022b21b7c
|
102.8 MB | Download |
md5:f7b752ff38711b60c9558ff54fc4c326
|
104.0 MB | Download |
md5:c295ecd2999dcf5766d880c0888db95e
|
103.6 MB | Download |
md5:c068978e86ee38d265d15d06adc80683
|
103.2 MB | Download |
md5:409f63cd8757e75f22bedeb61b789022
|
89.4 MB | Download |
md5:43ee501b56633d08a8ee7bcdc4f44834
|
102.8 MB | Download |
md5:3290286b5038a977ee48ded8a06f8c04
|
103.8 MB | Download |
md5:f5ed619ee14241773f852057932aae25
|
103.6 MB | Download |
md5:f308b0de95d35fa2349050a81e1480e9
|
103.1 MB | Download |
md5:362c4441dda72b127c9511efafc9ecde
|
103.7 MB | Download |
md5:ae478454b6b732b1d8593d4752d6f591
|
104.3 MB | Download |
md5:c5e13131b64f4f34eb4041946625c553
|
103.2 MB | Download |
md5:1db209a0dc49aa2ce40e7cff47244e49
|
103.7 MB | Download |
md5:283a0f6ab5235c8e373dc65803e5fe4a
|
100.4 MB | Download |
md5:af1bb3658804827a02494e82bc378596
|
101.3 MB | Download |
md5:dc1dab669e3e1b2ac524b6929f8eadd6
|
100.4 MB | Download |
md5:a665359f9ef80e1e712de67d2381fd31
|
100.7 MB | Download |
md5:2fcf260031ce7683bc1dd6fd2a58ab05
|
100.5 MB | Download |
md5:45ab2c06a28a88469714cfe0b8349cd6
|
100.9 MB | Download |
md5:bd230d6ff0364bb8c29059c8dfaf454c
|
100.5 MB | Download |
md5:691b63f96c6476b9a6670b8c70bd8e9f
|
100.4 MB | Download |
md5:874b7787b52beffacbf8e6d0355d0ab6
|
33.7 MB | Download |
md5:a6691a4d19143f88fa660918c6a262f6
|
100.8 MB | Download |
md5:bead29bd82f5bd1309d71321185b7591
|
100.5 MB | Download |
md5:e407d01c23db9ae82053b8643f0ed3af
|
101.0 MB | Download |
md5:d675e5a48bacceff6626ee47bae888d6
|
100.5 MB | Download |
md5:9d46033dc64f46555ccdbcf91c3f7b28
|
100.6 MB | Download |
md5:846231bec53c9a1eabcc8be5eb66df54
|
101.3 MB | Download |
md5:b89533ab251c42efa9ec354e78b633cf
|
100.5 MB | Download |
md5:df44c3dff52188cb227cfc13c6213a1a
|
100.5 MB | Download |
md5:73ac980b1dd6fc53fc91dc274eca2d76
|
106.6 MB | Download |
md5:8e5d6b7db9e2f9c9d760170b52b35dc4
|
106.8 MB | Download |
md5:49c6fdadb7ee23f700c20f058f76e39f
|
105.8 MB | Download |
md5:60f4f94c6a6be6cb00098cb5f7614901
|
105.9 MB | Download |
md5:451b5a8ec7fef362eb1032ee203e6153
|
106.0 MB | Download |
md5:bf65f2f8df3d923f466bd87a30333dd3
|
105.7 MB | Download |
md5:d329ab95f3cb0b1ab83bdd872775d2e2
|
105.7 MB | Download |
md5:e30d1625497d986c43cab486f6b61575
|
105.7 MB | Download |
md5:c1406dfa7921f885700f3cb8ccf791db
|
33.0 MB | Download |
md5:1f5827144ec5eccff345060c1c5e60ec
|
106.5 MB | Download |
md5:0d7f1e10bb150fbc907bc4bcc5a810b8
|
106.3 MB | Download |
md5:ce31b23e4af752b636cef479d92f92e0
|
106.4 MB | Download |
md5:0a802df06bafd15596f5d05aae19b7e5
|
105.7 MB | Download |
md5:8c881a17453d8c19dbd4d6f13ba6f5a8
|
105.4 MB | Download |
md5:3b8946ab7f53c37d878dcce36a5fe00d
|
106.3 MB | Download |
md5:d6c3dd2bfd6652c1fb09c331a3e69905
|
105.7 MB | Download |
md5:2ccf3f3e2ac23761960d5d25df55a26b
|
107.2 MB | Download |
md5:f498086acaee23eb7489ebc0c8bcdc8e
|
95.0 MB | Download |
md5:d539ef707cf5e5ed7438d637b4b4e782
|
94.9 MB | Download |
md5:a61273d34953cbed06a26866f01502ff
|
94.6 MB | Download |
md5:de256d69b54703058f97ef486d91951a
|
94.8 MB | Download |
md5:f7ba3ae2f9e38795ad5b1a1012da7842
|
94.8 MB | Download |
md5:15b7ce865401279488003cee318b5801
|
94.8 MB | Download |
md5:b26367d575725ed85cf85d4a13f04029
|
95.2 MB | Download |
md5:b93a13ffb4af5f70b1f170109d273d99
|
95.3 MB | Download |
md5:6ad41a7113bb48785c591f34a41d1439
|
30.7 MB | Download |
md5:f491b5c62347d5ed2679d6384b98cbb2
|
94.7 MB | Download |
md5:333ea6064d0ea9a7683ba02b19237ad5
|
94.8 MB | Download |
md5:f8b0a49a50734ff708b390bee022401a
|
95.6 MB | Download |
md5:e7847bbf3695d5f769e91c42c0047114
|
95.1 MB | Download |
md5:1f00d0220c6537394f71d7cfac84316f
|
95.8 MB | Download |
md5:73e96c0565daa2acd5a3a4f9e3776784
|
94.7 MB | Download |
md5:c17a0a30851f7b834dd5a063c0eb6cc2
|
95.2 MB | Download |
md5:6aa9a11a8529639790c581aacb655935
|
94.9 MB | Download |
Additional details
Related works
- Is supplement to
- arXiv:1911.09107 (arXiv)
References
- P. T. Komiske, E. M. Metodiev, EnergyFlow, https://energyflow.network.