Journal article Open Access

Evaluation of FESOM2.0 coupled to ECHAM6.3: Pre-industrial and HighResMIP simulations

Dmitry Sidorenko; Helge Goessling; Nikolay Koldunov; Patrick Scholz; Sergey Danilov; Dirk Barbi; William Cabos; Ozgur Gurses; Sven Harig; Claudia Hinrichs; Stephan Juricke; Gerrit Lohmann; Martin Losch; Longjang Mu; Thomas Rackow; Natalja Rakowsky; Dimitry Sein; Tido Semmler; Xiaoxu Shi; Christian Stepanek; Jan Streffing; Qiang Wang; Claudia Wekerle; Hu Yang; Thomas Jung

A new global climate model setup using FESOM2.0 for the sea ice-ocean component and ECHAM6.3 for the atmosphere and land-surface has been developed. Replacing FESOM1.4 by FESOM2.0 promises a higher efficiency of the new climate setup compared to its predecessor. The new setup allows for long-term climate integrations using a locally eddy-resolving ocean. Here it is evaluated in terms of (1) the mean state and long-term drift under pre-industrial climate conditions, (2) the fidelity in simulating the historical warming, and (3) differences between coarse and eddy- resolving ocean configurations. The results show that the realism of the new climate setup is overall within the range of existing models. In terms of oceanic temperatures, the historical warming signal is of smaller amplitude than the model drift in case of a relatively short spin-up. However, it is argued that the strategy of ‘de-drifting’ climate runs after the short spin-up, proposed by the HighResMIP protocol, allows one to isolate the warming signal. Moreover, the eddy-permitting/resolving ocean setup shows notable improvements regarding the simulation of oceanic surface temperatures, in particular in the Southern Ocean.

Files (2.6 MB)
Name Size
Sidorenko_et_al-2019-Journal_of_Advances_in_Modeling_Earth_Systems.pdf
md5:23109ffcc0d62baead92f58dfcff6f58
2.6 MB Download
25
18
views
downloads
Views 25
Downloads 18
Data volume 46.9 MB
Unique views 24
Unique downloads 18

Share

Cite as