Published November 2, 2019 | Version v1
Conference paper Open

ON-TRAC Consortium End-to-End Speech Translation Systems for the IWSLT 2019 Shared Task

Creators

  • 1. LIG - Universite ́ Grenoble Alpes, France

Description

This paper describes the ON-TRAC Consortium translation systems developed for the end-to-end model task of IWSLT Evaluation 2019 for the English→ Portuguese language pair. ON-TRAC Consortium is composed of researchers from three French academic laboratories: LIA (Avignon Université), LIG (Université Grenoble Alpes), and LIUM (Le Mans Université). A single end-to-end model built as a neural encoder-decoder architecture with attention mechanism was used for two primary submissions corresponding to the two EN-PT evaluations sets: (1) TED (MuST-C) and (2) How2. In this paper, we notably investigate impact of pooling heterogeneous corpora for training, impact of target tokenization (characters or BPEs), impact of speech input segmentation and we also compare our best end-to-end model (BLEU of 26.91 on MuST-C and 43.82 on How2 validation sets) to a pipeline (ASR+MT) approach.

Files

IWSLT2019_paper_38.pdf

Files (1.1 MB)

Name Size Download all
md5:cce836e55a0a9fe490f20e02ff184131
1.1 MB Preview Download