Conference paper Open Access

Data Augmentation for End-to-End Speech Translation: FBK@IWSLT '19

Di Gangi, Mattia A.; Negri, Matteo; Nguyen, Viet Nhat; Tebbifakhr, Amirhossein; Turchi, Marco

This paper describes FBK’s submission to the end-to-end speech translation (ST) task at IWSLT 2019. The task consists in the “direct” translation (i.e. without intermediate discrete representation) of English speech data derived from TED Talks or lectures into German texts. Our participation had a twofold goal: i) testing our latest models, and ii) eval- uating the contribution to model training of different data augmentation techniques. On the model side, we deployed our recently proposed S-Transformer with logarithmic distance penalty, an ST-oriented adaptation of the Transformer architecture widely used in machine translation (MT). On the training side, we focused on data augmentation techniques recently proposed for ST and automatic speech recognition (ASR). In particular, we exploited augmented data in different ways and at different stages of the process. We first trained an end-to-end ASR system and used the weights of its encoder to initialize the decoder of our ST model (transfer learning). Then, we used an English-German MT system trained on large data to translate the English side of the English-French training set into German, and used this newly-created data as additional training material. Finally, we trained our models using SpecAugment, an augmentation technique that randomly masks portions of the spectrograms in order to make them different at every training epoch. Our synthetic corpus and SpecAugment resulted in an improvement of 5 BLEU points over our baseline model on the test set of MuST-C En-De, reaching the score of 22.3 with a single end-to-end system.

Files (225.1 kB)
Name Size
IWSLT2019_paper_29.pdf
md5:a55f57f52a1a233dd7abef7cb228f832
225.1 kB Download
0
0
views
downloads
All versions This version
Views 00
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 00
Unique downloads 00

Share

Cite as