Conference paper Open Access
Rosendahl, Jan; Tran, Viet Anh Khoa; Wang, Weiyue; Ney, Hermann
In this work we analyze and compare the behavior of the Transformer architecture when using different positional encoding methods. While absolute and relative positional encoding perform equally strong overall, we show that relative positional encoding is vastly superior (4.4% to 11.9% BLEU) when translating a sentence that is longer than any observed training sentence. We further propose and analyze variations of relative positional encoding and observe that the number of trainable parameters can be reduced without a performance loss, by using fixed encoding vectors or by removing some of the positional encoding vectors.
Name | Size | |
---|---|---|
IWSLT2019_paper_21.pdf
md5:a2422d4b74a9634b2567ac4e9f630065 |
485.7 kB | Download |
All versions | This version | |
---|---|---|
Views | 238 | 239 |
Downloads | 179 | 178 |
Data volume | 86.9 MB | 86.4 MB |
Unique views | 217 | 218 |
Unique downloads | 167 | 166 |