Published March 27, 2019 | Version 2.3
Journal article Open

Machine Learning Analysis of τRAMD Trajectories to Decipher Molecular Determinants of Drug-Target Residence Times

  • 1. HITS gGmbH
  • 2. HITS gGmbH, Heidelberg University

Contributors

Contact person:

  • 1. Heidelberg Institute for Theoretical Studies (HITS),Heidelberg, Germany
  • 2. Heidelberg University; Heidelberg Institute for Theoretical Studies (HITS),Heidelberg, Germany
  • 3. Heidelberg University, Heidelberg Institute for Theoretical Studies (HITS); Heidelberg, Germany

Description

The manuscript, supporting data and codes for the manuscript:

"Machine learning analysis of tauRAMD trajectories to decipher molecular determinants of drug-target residence times" of  Kokh DB, Kaufman T, Kister B, Wade RC., Front. Mol. Biosci., 24 May 2019 | https://doi.org/10.3389/fmolb.2019.00036

fmolb-06-00036.pdf  - paper
HSP90.tar.gz  - topology and coordinate files for all  complexes used in RAMD simulations

ML-HSP90-v2.1.tar.gz  - scripts and input data for ML analysis of ligand dissociation reported in the paper

 

Files

fmolb-06-00036.pdf

Files (339.5 MB)

Name Size Download all
md5:63354b03e1179eba11872cb1b7724a9a
7.6 MB Preview Download
md5:6a80da74f53e648162a3d6755d456a16
296.5 MB Download
md5:9e911c3185e3217bd62622ff894764ff
35.5 MB Download
md5:90c2b90ba7cec8c8864d019998d45203
7.3 kB Preview Download

Additional details

Related works

Is cited by
Journal article: 10.3389/fmolb.2019.00036 (DOI)

Funding

HBP SGA2 – Human Brain Project Specific Grant Agreement 2 785907
European Commission
PRACE – Partnership for Advanced Computing in Europe 211528
European Commission
K4DD – Kinetics for Drug Discovery (K4DD) 115366
European Commission