Published October 4, 2019
| Version 3.1.3
Software
Open
PascalKieslich/mousetrap: mousetrap 3.1.3
- 1. University of Mannheim
- 2. Center for Cognitive Decision Science, University of Basel
Description
Announcements
- A book chapter on the mousetrap software packages has been published. It covers many common analyses using the mousetrap R package. Please cite it as follows when using mousetrap in your research:
- Kieslich, P. J., Henninger, F., Wulff, D. U., Haslbeck, J. M. B., & Schulte-Mecklenbeck, M. (2019). Mouse-tracking: A practical guide to implementation and analysis. In M. Schulte-Mecklenbeck, A. Kühberger, & J. G. Johnson (Eds.), A Handbook of Process Tracing Methods (pp. 111-130). New York, NY: Routledge.
- Besides, if you use functions for clustering and mapping trajectories, please also include the following reference:
- Wulff, D. U., Haslbeck, J. M. B., Kieslich, P. J., Henninger, F., & Schulte-Mecklenbeck, M. (2019). Mouse-tracking: Detecting types in movement trajectories. In M. Schulte-Mecklenbeck, A. Kühberger, & J. G. Johnson (Eds.), A Handbook of Process Tracing Methods (pp. 131-145). New York, NY: Routledge.
mt_sample_entropy
: By default, sample entropy is calculated based on the differences of the position values (following Hehman et al., 2015). An optional argumentuse_diff
now has been introduced to allow users to override this behavior and use the untransformed values instead, by settinguse_diff=FALSE
.mt_align_start_end
: Now checks, if start and end points are equal for a trial (separately per dimension). If so, returns a warning message as the aligned trajectory values for the respective dimension will beNaN
/Inf
/-Inf
.
Files
PascalKieslich/mousetrap-3.1.3.zip
Files
(2.1 MB)
Name | Size | Download all |
---|---|---|
md5:d5c2fc9c6be7e6ba695f636680a97dbe
|
2.1 MB | Preview Download |
Additional details
Related works
- Is supplement to
- https://github.com/PascalKieslich/mousetrap/tree/3.1.3 (URL)