Estimation of the volatility distribution of organic aerosol combining thermodenuder and isothermal dilution measurements
- 1. FORTH / ICE-HT
- 2. Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, USA
- 3. Department of Chemistry, University of Patras
Description
A method is developed following the work of Grieshop et al. (2009) for the determination of the organic aerosol (OA) volatility distribution combining thermodenuder (TD) and isothermal dilution measurements. The approach was tested in experiments that were conducted in a smog chamber using organic aerosol (OA) produced during meat charbroiling. A TD was operated at temperatures ranging from 25 to 250 ◦C with a 14 s centerline residence time coupled to a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a scanning mobility particle sizer (SMPS). In parallel, a dilution chamber filled with clean air was used to dilute isothermally the aerosol of the larger chamber by approximately a factor of 10. The OA mass fraction remaining was measured as a function of temperature in the TD and as a function of time in the isothermal dilution chamber. These two sets of measurements were used together to estimate the volatility distribution of the OA and its effective vaporization enthalpy and accommodation coefficient. In the isothermal dilution experiments approximately 20 % of the OA evaporated within 15 min. Almost all the OA evaporated in the TD at approximately 200 ◦C. The resulting volatility distributions suggested that around 60–75 % of the cooking OA (COA) at concentrations around 500 µg m−3 consisted of low-volatility organic compounds (LVOCs), 20–30 % of semivolatile organic compounds (SVOCs), and around 10 % of intermediate-volatility organic compounds (IVOCs). The estimated effective vaporization enthalpy of COA was 100 ± 20 kJ mol−1 and the effective accommodation coefficient was 0.06–0.07. Addition of the dilution measurements to the TD data results in a lower uncertainty of the estimated vaporization enthalpy as well as the SVOC content of the OA.
Files
2017_067.pdf
Files
(362.1 kB)
Name | Size | Download all |
---|---|---|
md5:7099c9b514c4df55a9a72977ec9a5f87
|
362.1 kB | Preview Download |
Additional details
Related works
Funding
- Atmospheric Organic Aerosol-Water Interactions 1455244
- National Science Foundation