Real-time in-situ secondary structure analysis of protein monolayer with mid-infrared plasmonic nanoantennas
Description
Dynamic detection of protein conformational changes at physiological conditions on a minute amount of samples is immensely important for understanding the structural determinants of protein function in health and disease and to develop assays and diagnostics for protein misfolding and protein aggregation diseases. Herein, we experimentally demonstrate the capabilities of a mid-infrared plasmonic biosensor for real-time and in situ protein secondary structure analysis in aqueous environment at nanoscale. We present label-free ultrasensitive dynamic monitoring of β-sheet to disordered conformational transitions in a monolayer of the disease-related α-synuclein protein under varying stimulus conditions. Our experiments show that the extracted secondary structure signals from plasmonically enhanced amide I signatures in the protein monolayer can be reliably and reproducibly acquired with second derivative analysis for dynamic monitoring. Furthermore, by using a polymer layer we show that our nanoplasmonic approach of extracting the frequency components of vibrational signatures matches with the results attained from gold-standard infrared transmission measurements. By facilitating conformational analysis on small quantities of immobilized proteins in response to external stimuli such as drugs, our plasmonic biosensor could be used to introduce platforms for screening small molecule modulators of protein misfolding and aggregation.
Files
Final Version-7.pdf
Files
(4.6 MB)
Name | Size | Download all |
---|---|---|
md5:16f9c3358c02fe526465ab8d1081a73e
|
4.6 MB | Preview Download |
Additional details
Funding
- ULTRACHIRAL – Ultrasensitive chiral detection by signal-reversing cavity polarimetry: applications to in-situ proteomics, single-molecule chirality, HPLC analysis, medical diagnostics, and atmospheric studies 737071
- European Commission
- NOCTURNO – Non-Conventional Wave Propagation for Future Sensing and Actuating Technologies 777714
- European Commission
- VIBRANT-BIO – High-throughput vibrational fingerprinting by nanoplasmonics for disease biology 682167
- European Commission