Conference paper Open Access

Algebraic Techniques for Short(er) Exact Lattice-Based Zero-Knowledge Proofs

Bootle, Jonathan; Lyubashevsky, Vadim; Seiler, Gregor

A key component of many lattice-based protocols is a zeroknowledge proof of knowledge of a vector ~s with small coe cients satisfying A~s = ~u mod q. While there exist fairly e cient proofs for a relaxed version of this equation which prove the knowledge of ~s0 and c satisfying A~s0 = ~uc where k~s0k   k~sk and c is some small element in the ring over which the proof is performed, the proofs for the exact version of the equation are considerably less practical. The best such proof technique is an adaptation of Stern's protocol (Crypto '93), for proving knowledge of nearby codewords, to larger moduli. The scheme is a  -protocol, each of whose iterations has soundness error 2=3, and thus requires over 200 repetitions to obtain soundness error of 2-128, which is the main culprit behind the large size of the proofs produced. In this paper, we propose the  rst lattice-based proof system that signicantly outperforms Stern-type proofs for proving knowledge of a short ~s satisfying A~s = ~u mod q. Unlike Stern's proof, which is combinatorial in nature, our proof is more algebraic and uses various relaxed zeroknowledge proofs as sub-routines. The main savings in our proof system comes from the fact that each round has soundness error of 1=n, where n is the number of columns of A. For typical applications, n is a few thousand, and therefore our proof needs to be repeated around 10 times to achieve a soundness error of 2-128. For concrete parameters, it produces proofs that are around an order of magnitude smaller than those produced using Stern's approach.

Files (487.2 kB)
Name Size
487.2 kB Download
Views 123
Downloads 185
Data volume 90.1 MB
Unique views 119
Unique downloads 183


Cite as