Published April 30, 2018 | Version v1
Journal article Open

DEVELOPMENT OF A TECHNOLOGICAL APPROACH TO THE CONTROL OF TURBINE CASINGS RESOURCE FOR SUPERCRITICAL STEAM PARAMETERS

  • 1. National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»

Description

A comprehensive model for evaluation of the resource of HPC of the turbine K-800-240-2, which includes calculation of thermal, stressed-strained state, cyclic and static damageability, is presented here. The numerical studies conducted with the use of modern methods of mathematical modeling showed a high impact of forces of pins’ tightening on the stressed-strained state of the casing elements (the stress level increased by 17.7 %). A technological approach to resource control, aimed at a change in pins’ tightening efforts, was proposed. It was established that this method decreases static damageability of basic metal of casings (by 9.7 %), improving its long-term strength. When taking into account tightening forces, the maximum stress intensity decreased by 9.3 %, while the stress level in the flange joint decreased by 11–41 %. These positive moments are accompanied by an increase in individual resource of the casing by 10 %. The developed concept and recommendations have significant importance for ensuring long-term operation of steam turbines with the initial pressure of hot steam at 24 MPa

Files

Development of a technological approach to the control of turbine casings resource for supercritical steam parameters.pdf

Additional details

References

  • Chernousenko, O. Y., Peshko, V. A. (2016). Influence of the operation of the power units of thermal power plants in the maneuvering mode on the aging rate of power equipment. NTU "KhPI" Bulletin: Power and heat engineering processes and equipment, 10 (1182), 6–16. doi: 10.20998/2078-774x.2016.10.01
  • Nazolin, A. L., Polyakov, V. I. (2013). Nadezhnost' elektroenergetiki. Povyshenie zhivuchesti i prodlenie sroka sluzhby turbogeneratorov metodami rezhimnoy optimizacii. Elektricheskie stancii, 10, 8–12.
  • Georgievskaya, E. V., Gavrilov, S. N. (2013). Osobennosti prodleniya sroka sluzhby parovyh turbin pri narabotkah, znachitel'no prevyshayushchih parkoviy resurs. Visnyk NTU «KhPI». Seriya: Enerhetychni ta teplotekhnichni protsesy y ustatkuvannia, 12 (986), 107–113.
  • Wang, R., Wei, J., Hu, D., Shen, X., Fan, J. (2013). Investigation on experimental load spectrum for high and low cycle combined fatigue test. Propulsion and Power Research, 2 (4), 235–242. doi: 10.1016/j.jppr.2013.11.004
  • Bakic, G., Sijacki-Zeravcic, V., Djukic, M., Rajicic, B., Tasic, M. (2014). Remaining life assessment of a high pressure turbine casing in creep and low cycle service regime. Thermal Science, 18, 127–138. doi: 10.2298/tsci121219179b
  • Ji, D.-M., Sun, J.-Q., Dui, Y., Ren, J.-X. (2017). The optimization of the start-up scheduling for a 320 MW steam turbine. Energy, 125, 345–355. doi: 10.1016/j.energy.2017.02.139
  • Kostyuk, A. G. (2014). Selection of labyrinth seals in steam turbines. Thermal Engineering, 62 (1), 14–18. doi: 10.1134/s0040601515010061
  • Naik, D., Kumar, K. (2017). Contact Pressure Analysis of Steam Turbine Casing. International Research Journal of Engineering and Technology, 04 (06), 909–913.
  • Zhao, N., Wang, W., Hong, H., Adjei, R. A., Liu, Y. (2016). Mechanical Behavior Study of Steam Turbine Casing Bolts Under In-Service Conditions. Volume 7A: Structures and Dynamics. doi: 10.1115/gt2016-56723
  • Grishin, N. N., Gubskiy, A. N., Pal'kov, S. A. (2014). Modelirovanie vliyaniya yavleniy polzuchesti na napryazhenno-deformirovannoe sostoyanie vysokonapryazhennyh elementov parovyh turbin. Visnyk NTU «KhPI». Seriya: Enerhetychni ta teplotekhnichni protsesy y ustatkuvannia, 12 (1055), 98–103.
  • Peshko, V., Chernousenko, O., Nikulenkova, T., Nikulenkov, A. (2016). Comprehensive rotor service life study for high & intermediate pressure cylinders of high power steam turbines. Propulsion and Power Research, 5 (4), 302–309. doi: 10.1016/j.jppr.2016.11.008
  • Trubilov, M. A., Arsen'ev, G. V., Frolov, V. V. et. al.; Kostyuk, A. G., Frolov, V. V. (Eds.) (1985). Parovye i gazovye turbiny. Moscow: Energoatomizdat, 352.