Published January 24, 2018 | Version v1
Journal article Open

3,5-dinitrophenyl clubbed azoles against latent tuberculosis- a theoretical mechanistic study

  • 1. Department of Pharmaceutical Chemistry, A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh – 530 003, Andhra Pradesh, India.
  • 2. Innovative Informatica Technologies, Telangana, Hyderabad – 500 049, India.

Description

Abstract: In this present study, novel series of dinitrophenyl linked azole compounds were designed keeping in view of the importance of azole molecules in combinations with nitro and amino group by hyphenation of these two pharmacophores as a single molecular scaffold against latent tuberculosis targeting Isocitrate Lyase (ICL) enzyme by using various computational tools. Our docking studies evidenced that all the novel designed compounds have the potential to inhibit the ICL enzyme with a binding energy in a range of -4.6 to -8.9 Kcal/mol. Moreover, all the designed compounds were predicted to be having promising ADMET parameters and found to be well in compliance with Lipinski‘s rule of five along with no toxicology profile. Among all the thirty five compounds tested, compound 3F is the best lead like molecule with -8.9 kcal/mol of binding energy compared to Rifampicin and 3-nitropropionate which has shown -8.1 kcal/mol and -4.6 Kcal/mol. Molecular dynamic simulation studies for compound 3F in complex with Isocitrate Lyase has elucidated several interesting molecular level protein-ligand interactions with some of the important amino acid residues present at the active binding site of ICL enzyme compared to Rifampicin and 3-nitropropionate. Conclusively, novel designed compound 3F of the present study have shown promising tuberculosis inhibition potential worth considering for further evaluations.

Files

3-5-dinitrophenyl-clubbed-azoles-against-latent-tuberculosis-a-theoretical-mechanistic-study.pdf

Additional details

References

  • Dunn, M. F., J. A. Ramirez-Trujillo, and I. Hernández-Lucas. "Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis." Microbiology 155.10 (2009): 3166- 3175.
  • Mikusova, Katarina, Vadim Makarov, and Joao Neres. "DprE1– from the discovery to the promising tuberculosis drug target." Current pharmaceutical design 20.27 (2014): 4379- 4403.
  • Gler, Maria Tarcela, et al. "Delamanid for multidrug-resistant pulmonary tuberculosis." New England Journal of Medicine366.23 (2012): 2151-2160.
  • Diacon, Andreas H., et al. "The diarylquinoline TMC207 for multidrug-resistant tuberculosis." New England Journal of Medicine 360.23 (2009): 2397-2405
  • Kakkar, Ashish Kumar, and Neha Dahiya. "Bedaquiline for the treatment of resistant tuberculosis: promises and pitfalls." Tuberculosis 94.4 (2014): 357-362.
  • Lee, Yie-Vern, Habibah A. Wahab, and Yee Siew Choong. "Potential inhibitors for isocitrate lyase of Mycobacterium tuberculosis and non-M. tuberculosis: A summary." BioMed research international 2015 (2015).
  • Karabanovich, Galina, et al. "Development of 3, 5- dinitrobenzylsulfanyl-1, 3, 4-oxadiazoles and thiadiazoles as selective antitubercular agents active against replicating and nonreplicating Mycobacterium tuberculosis." Journal of medicinal chemistry 59.6 (2016): 2362-2380.
  • Sharma, Vivek, et al. "Structure of isocitrate lyase, a persistence factor of Mycobacterium tuberculosis." Nature Structural & Molecular Biology 7.8 (2000): 663-668.
  • López-Boado, Y. S., et al. "Catabolite inactivation of isocitrate lyase from Saccharomyces cerevisiae." Archives of microbiology 147.3 (1987): 231-234.
  • Christophe, Thierry, et al. "High content screening identifies decaprenyl-phosphoribose 2′ epimerase as a target for intracellular antimycobacterial inhibitors." PLoS pathogens5.10 (2009): e1000645.
  • Hein, Christopher D., Xin-Ming Liu, and Dong Wang. "Click chemistry, a powerful tool for pharmaceutical sciences." Pharmaceutical research 25.10 (2008): 2216-2230.
  • Walczak, Krzysztof, Andrzej Gondela, and Jerzy Suwiński. "Synthesis and anti-tuberculosis activity of N-aryl-Cnitroazoles." European journal of medicinal chemistry 39.10 (2004): 849-853.
  • Babaoglu, Kerim, et al. "Novel inhibitors of an emerging target in Mycobacterium tuberculosis; substituted thiazolidinones as inhibitors of dTDP-rhamnose synthesis." Bioorganic & medicinal chemistry letters 13.19 (2003): 3227-3230.
  • Khalaf, Abedawn I., et al. "Distamycin analogues with enhanced lipophilicity: synthesis and antimicrobial activity." Journal of medicinal chemistry 47.8 (2004): 2133-2156.
  • Zahoor Ahmad, Sadhna Sharma, and G. K. Khuller. "In vitro and ex vivo antimycobacterial potential of azole drugs against Mycobacterium tuberculosis H37Rv." FEMS Microbiology Letters 251.1 (2005): 19-22.
  • Maestro (Version 9.6). (2013). New York, NY: Schrödinger, LLC.
  • Goodsell, David S., Garrett M. Morris, and Arthur J. Olson. "Automated docking of flexible ligands: applications of AutoDock." Journal of Molecular Recognition 9.1 (1996): 1-5
  • Desmond Molecular Dynamics System (Version 3.6). New York, NY: D.E. Shaw Research; Maestro-Desmond Interoperability Tools (Version 3.6). (2013). New York, NY: Schrödinger.
  • Bernstein, Frances C., et al. "The Protein Data Bank: a computer-based archival file for macromolecular structures." Archives of biochemistry and biophysics 185.2 (1978): 584-591.
  • Accelrys Software Inc: Discovery studio Visualizer 4.0. (2014). http://accelrys.com/products/discovery-studio/visualizationdownload.php.
  • Vanommeslaeghe, Kenno, et al. "CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields." Journal of computational chemistry 31.4 (2010): 671-690
  • . Hussain Basha, S., and K. Naresh Kumar. "Ligand and Structure based virtual screening studies to identify potent inhibitors against herpes virus targeting gB-gH-gL complex interface as a novel drug target." Open access sci rep 1.12 (2012): 566.
  • Hussain Basha, S., Prakash Bethapudi, and Firoz Majji Rambabu. "Anti-angiogenesis property by Quercetin compound targeting VEGFR2 elucidated in a computational approach." European Journal of Biotechnology and Bioscience 2.6 (2014): 30-46.
  • Rao, Chennu Maruthi Malya Prasada, et al. "Molecular docking based screening of novel designed chalcone series of compounds for their anti-cancer activity targeting EGFR kinase domain." Bioinformation 11.7 (2015): 322.
  • Reddy, S. V. G., et al. "Molecular docking and dynamic simulation studies evidenced plausible immunotherapeutic anticancer property by Withaferin A targeting indoleamine 2, 3- dioxygenase." Journal of Biomolecular Structure and Dynamics 33.12 (2015): 2695-2709.
  • Morris, Garrett M., et al. "Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function." Journal of computational chemistry 19.14 (1998): 1639-1662.
  • Jorgensen, William L., David S. Maxwell, and Julian TiradoRives. "Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids." J. Am. Chem. Soc 118.45 (1996): 11225-11236.
  • Jorgensen, William L., et al. "Comparison of simple potential functions for simulating liquid water." The Journal of chemical physics 79.2 (1983): 926-935.
  • Samad, Firoz Abdul, et al. "A comprehensive In Silico analysis on the structural and functional impact of SNPs in the congenital heart defects associated with NKX2-5 gene—A molecular dynamic simulation approach." PloS one 11.5 (2016): e0153999.
  • Shinoda, Wataru, and Masuhiro Mikami. "Rigid‐body dynamics in the isothermal‐isobaric ensemble: A test on the accuracy and computational efficiency." Journal of computational chemistry 24.8 (2003): 920-930.
  • Nosé, Shuichi. "A unified formulation of the constant temperature molecular dynamics methods." The Journal of chemical physics 81.1 (1984): 511-519.
  • Lipinski, Christopher A. "Lead-and drug-like compounds: the rule-of-five revolution." Drug Discovery Today: Technologies1.4 (2004): 337-341.
  • DuBay, Kateri H., and Phillip L. Geissler. "Calculation of proteins' total side-chain torsional entropy and its influence on protein–ligand interactions." Journal of molecular biology391.2 (2009): 484-497.
  • Lobanov, M. Yu, N. S. Bogatyreva, and O. V. Galzitskaya. "Radius of gyration as an indicator of protein structure compactness." Molecular Biology 42.4 (2008): 623-628.
  • Mohd Ashraf, et al. "Characterization, molecular docking, dynamics simulation and metadynamics of kisspeptin receptor with kisspeptin." International Journal of Biological Macromolecules 101 (2017): 241-253.