Published February 16, 2021
| Version v4
Dataset
Open
A spatiotemporal reconstruction of daily ambient temperature using satellite data in the Megalopolis of Central Mexico from 2003–2019
Description
In this project, we built a model to predict the mean, maximum, and minimum temperature on each day at each square in a 1-km grid for an area around Mexico City.
See the README at https://github.com/justlab/Mexico_temperature/blob/master/README.rst for more information and instructions, or see the publication at:
Gutiérrez-Avila, I., Arfer, K. B., Wong, S., Rush, J., Kloog, I., & Just, A. C. (2021). A spatiotemporal reconstruction of daily ambient temperature using satellite data in the Megalopolis of Central Mexico from 2003–2019. International Journal of Climatology, 41, 4095–4111. doi:10.1002/joc.7060
Files
manuscript_code_bits.txt
Files
(9.3 GB)
Name | Size | Download all |
---|---|---|
md5:537adf40a3e332b2c393435bf0ca0a91
|
54.5 MB | Download |
md5:0a57083980d2ca66a78a641a4b6115f8
|
5.7 MB | Download |
md5:382a0615454a606ec3f49a75677d7e80
|
25.9 kB | Preview Download |
md5:3b1f3150151cdd0e2b904432fe2d968b
|
3.2 MB | Download |
md5:4ba2eb386761e603d852f285af93507f
|
516.3 kB | Download |
md5:fbc9feff758fbc384e950476d9ee9d1c
|
37.2 MB | Download |
md5:e970bfd4bb1ba2cea9145ebcf64bd62f
|
37.3 MB | Download |
md5:4961ee72685df351acea544a14d6ca04
|
37.0 MB | Download |
md5:90cf7c06739a8326aac432c9be5f830c
|
37.2 MB | Download |
md5:04b77cf3079de6fad0bddc8a8d79728a
|
37.4 MB | Download |
md5:17c490689f20bf91a02571256d7bac35
|
37.7 MB | Download |
md5:7c9303521afaf499dc521e1f526e73d9
|
37.8 MB | Download |
md5:3ca749ac8d5ab48c073663f3b95614dc
|
37.6 MB | Download |
md5:8f900ee780e8b27647b1bb9971e53905
|
37.8 MB | Download |
md5:f7b7a57d3c6beed85d172c3c362dab88
|
37.0 MB | Download |
md5:1d34e961e3cb2556eecc31ac0fbdf0aa
|
37.5 MB | Download |
md5:93ac9ecb1e4a08d1dc5453f819a3d061
|
37.4 MB | Download |
md5:ab82409e388a2a95b4f51562bfad64cf
|
37.3 MB | Download |
md5:7ee8ef0ecfcb8591d85182208ed08c06
|
37.7 MB | Download |
md5:0a040d4d42e5cd6ca04292586c0d0b39
|
37.8 MB | Download |
md5:477dd8144919ce8908e359c45bd4925f
|
37.4 MB | Download |
md5:251a4647ef3bc523916c17b10fefe994
|
37.7 MB | Download |
md5:46d4be0ec6747af0b40aa4f51b83bf1e
|
8.6 GB | Download |
Additional details
Related works
- Is published in
- Journal article: 10.1002/joc.7060 (DOI)