Presentation Open Access

Algorithmic Impact Assessment: Fairness, Robustness and Explainability in Automated Decision-Making

Koshiyama, Adriano; Engin, Zeynep

The workshop session focuses on the following topics: 

  • Introduction to AI & Machine Learning (Algorithms)
  • Key Components of Algorithmic Impact Assessment
  • Algorithmic Explainability
  • Algorithmic Fairness
  • Algorithmic Robustness
Files (5.0 MB)
Name Size
A - Algorithmic Impact Assessment - Adriano Koshiyama.pdf
md5:8cb0eb115d5a665657fbaefe1aad0454
4.0 MB Download
AI Assessment Canvas - Clean.pdf
md5:ddfda804b395d5ffd4d09b2a07b829f4
109.0 kB Download
AI Assessment Canvas - Clean.png
md5:cc6f78c50b95fa28eac2151c8f54ba34
133.1 kB Download
AI Assessment Canvas.pdf
md5:5816a86558b6d6c72dcefb5496028f1e
204.8 kB Download
AI Assessment Canvas.png
md5:c2c1d51c5b8f075422a05c262a724ccd
185.8 kB Download
Diversity, non-discrimination and fairness checklist.docx
md5:a0992a52ae05048798f498fe8dae474f
16.9 kB Download
Explainability checklist.docx
md5:b8dbb88ed44208d45cc46a9b048ee527
16.5 kB Download
Fairness, Transparency and Robustness in Automated Decision Making - V0.docx
md5:73a93da3052259064db7f2873d2a344b
338.3 kB Download
1,280
2,594
views
downloads
All versions This version
Views 1,280852
Downloads 2,5941,745
Data volume 4.8 GB3.4 GB
Unique views 1,150774
Unique downloads 1,9771,384

Share

Cite as