Published February 25, 2019 | Version v1
Journal article Open

The Nesfatin-1 Pathway from Hippocampus to Ventromedial Nucleus and its Regulation on Gastric Motility in Diabetic Rat

Description

Objective: To investigate the effect of microinjection of Nesfatin-1 into VMH on gastric motility in diabetic rats and its regulatory mechanism, and to study whether electrical stimulation of hippocampal CA1 region can regulate this process. Methods: The diabetic rat model was established, and the hippocampal-VMH nesfatin-1 pathway was observed by retrograde gold fluorescence tracing combined with fluorescence immunohistochemistry. The effects of microinjection of nesfatin-1 by VMH and electrical stimulation of hippocampus on gastric motility were observed in vivo. Results: Nesfatin-1 inhibited gastric motility in a dose-dependent manner, and astressin-B partially blocked the inhibition of nesfatin-1 on gastric motility; Nesfatin-1 immunoreactive neurons were present in the cytoplasm of hippocampal CA1 region and Nesfatin-1 was expressed in some fluorescent gold labeled cells; electrostimulation of hippocampal CA1 region could promote gastric motility in diabetic rats, and anti-NUCB2/Nesfatin-1 antibody could promote gastric motility in diabetic rats.Enhance the effect of electrical stimulation of hippocampal CA1 region on gastric motility. Conclusion: Nesfatin-1 injection into VMH can regulate gastric motility in diabetic rats, which may be related to the CRF system, and the hippocampal CA1 region participates in the regulation of gastric motility by nesfatin-1 in VMH.

Read Complete Article at ijSciences: V72018121892 AND DOI: http://dx.doi.org/10.18483/ijSci.1892

Files

V82019021892.pdf

Files (1.1 MB)

Name Size Download all
md5:257c28264b123acccd569e32ac532ad2
1.1 MB Preview Download

Additional details