Published December 3, 2018 | Version v1
Thesis Open

Climate change in Belgium: recent and future evolution of global radiation and hydroclimatic conditions favouring floods using the regional climate model MAR

  • 1. Université de Liège
  • 1. Université de Liège

Description

In Belgium, the future response of the climate to increasing greenhouse gas concentration is not clear, especially with regard to the perturbations of the precipitation regime, snow cover, and global radiation. On the one hand, existing studies show results which differ strongly either according to the future scenario, or from one model to another. On the other hand, there is even an absence of studies focussing on Belgium regarding future changes in snow cover and global radiation. Given their potential impacts on the society (water management, energy supply, biodiversity, tourism), future changes in precipitation, snow cover, and global radiation require further research. As the orography, the exposition to the dominant winds, and the proximity of the North Sea determine a large spatial variability in the Belgian climate, the latter requires a fine representation of these features to be properly simulated. Compared to global climate models (GCM), regional climate models (RCM) are recognized for their ability to represent climatic phenomena with higher spatial resolutions.

In the framework of this doctoral thesis, the RCM MAR (for "Modèle Atmosphérique Régional" in French), which is developed at the Laboratory of Climatology and Topoclimatology of the University of Liège, was applied for the first time to Belgium. The aim was first to assess the performances of MAR over Belgium and then to study the current and future evolution of hydroclimatic conditions favouring floods, and also the current and future evolution of global radiation. For this purpose, historical simulations were performed over 1959-2014. Future projections (2006-2100) were then performed under the most pessimist IPCC future scenario (RCP8.5). The horizontal resolution used for both historical and future simulations is 5 km.

By comparing the MAR outputs to ground-based measurements from 20 weather stations over 2008-2014, the results show that MAR successfully simulates the spatial and temporal variability of the Belgian climate. In fact, the biases found in the MAR results are non-significant and the correlation coefficients are satisfying with regard to temperature, precipitation, snow height, global radiation and cloudiness. The MAR results are particularly satisfying during the winter months and in High Belgium where the climate is the coldest.

Regarding hydroclimatic conditions favouring floods, we focused on the Ourthe catchment. In this river, about 70 % of floods occur during the winter months and result from either the rapid melting of the snow pack covering the Ardennes eventually combined with rainfall or abundant rainfall alone. The current evolution of hydroclimatic conditions favouring floods was first assessed for the period 1959-2010. Conditions favouring floods in the Ourthe River present a negative trend over 1959–2010 as a result of a decrease in snow accumulation and a shortening of the snow season. Regarding the impact of the evolution of extreme precipitation events on hydroclimatic conditions favouring floods, the signal is less clear because the trends depend on the data used to force the MAR model. By the end of the 21st century, under the most pessimist scenario, the results show an acceleration of the snow cover depletion resulting in a decrease in conditions favouring floods. Further, the impact of the evolution of extreme precipitation events on hydroclimatic conditions favouring floods, no significant change was found although these trends are subject to uncertainties due to the deficiencies of the convective scheme of MAR.

Regarding global radiation, its current evolution was first assessed for the period 1959-2010. In addition, we consider two distinct periods in our analysis: 1959-1979 (dimming) and 1980-2010 (brightening). For both the dimming and the brightening periods, our results show that the annual global radiation trends are mainly driven by global radiation changes in spring and summer. The increase in global radiation observed in Belgium since the 1980s and especially since the 2000s could mainly be explained by a decrease in low and medium cloud cover. This would strengthen the effect of the decrease in aerosol load on global radiation that has been observed in Europe since the 1980s. The origin of these changes in cloudiness is not clear and could result from changes in both aerosol-cloud interactions and atmospheric-circulation, such as more frequent tropical air advections and more frequent anticyclonic conditions over Western Europe due to the poleward shift of extratropical storm tracks. These changes in the atmospheric circulation may result from global warming and may persist in the future. In fact, by the end of the 21st century, under the most pessimist scenario, the models simulate an increase in the blocking regime frequency in summer over Europe. For Belgium, this implies more frequent anticyclonic conditions favouring cloudless conditions. The future projections performed with MAR exhibit significant decreasing total cloud cover, and particularly decreasing low and medium cloud cover. However, this declining cloud cover leads to contrasting changes in global radiation depending on the data used to force MAR.

Notes

This thesis was funded by the Fonds pour la formation à la Recherche dans l'Industrie et dans l'Agriculture (Communauté française de Belgique) - FRIA (BE)

Files

thesis_cwyard.pdf

Files (132.4 MB)

Name Size Download all
md5:04ee41e526792844629c682cb22614a6
132.4 MB Preview Download