Planned intervention: On Thursday March 28th 07:00 UTC Zenodo will be unavailable for up to 5 minutes to perform a database upgrade.
Published March 24, 2015 | Version v1
Report Open

Microbial synthesis of nitrogenous heterocycles

  • 1. Institute of Applied Mechanics RAS

Description

Describes examples of the application of microbial technologies for obtaining of derivatives from a series of nitrogen heterocycles (saturated nitrogen heterocycles, azaarenes and quinolones). It is proposed alternative ways for synthesizing substances that are difficult to obtain by the methods of organic chemistry. Microbial technologies of synthesis of organic compounds may find out a practical application in the production of various drugs.

Files

Parshikov_final_2015.pdf

Files (1.9 MB)

Name Size Download all
md5:ff2d31ba58035e38ccc541058e1838b5
1.9 MB Preview Download

Additional details

Related works

Is cited by
10.5281/zenodo.28313 (DOI)

References

  • Abd El-Ghany W.A., Madian K. Control of experimental colisepticaemia in broiler chickens using sarafloxacin. Life Sci. J. 2011. V. 8. N 3. P.318-328.
  • Achan J., Talisuna A.O., Erhart A., Yeka A., Tibenderana J.K., Baliraine F.N., Rosenthal P.J., D'Alessandro U. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malaria J. 2011. V. 10. N 144, P.12.
  • Adjei M.D., Heinze T.M., Deck J., Freeman J.P., Williams A.J., Sutherland J.B. Transformation of the antibacterial agent norfloxacin by environmental mycobacteria. Appl. Environ. Microbiol. 2006. V. 72. N 9. P.5790-5793.
  • Adjei M.D., Heinze T.M., Deck J., Freeman J.P., Williams. A.J., Sutherland J.B. Acetylation and nitrosation of ciprofloxacin by environmental strains of mycobacteria. Can. J. Microbiol. 2007. V. 53. P.144-147.
  • Agarwal A., Srivastava K., Puri S.K., Chauhan P.M.S. Synthesis of substituted indole derivatives as a new class of antimalarial agents. Bioorg. Med. Chem. Lett. 2005. V. 15. P. 3133–3136.
  • Ahmad S., Henderson K., Dunsday G., Zachariou M. Microbial biotransformations: stereoselective synthesis of pharmaceutical drug precursors. Australas Biotechnol. 2001. N 11. P.26–28.
  • Ahn K.H., Shin Y-S. Synthesis of 1,4-dideoxy-1,4-imino-D-arabinitol (D-AB-1) through a divergent approach. Bull. Korean Chem. Soc. 1997. V. 18. N 11. P.1192-1195.
  • Aislabie J., Bej A.K., Hurst H., Rothenburger S., Atlas R.M. Microbial degradation of quinoline and methylquinolines. Appl. Environ. Microbiol. 1990. N 56. P.345–351.
  • Aislabie J., Rothenburger S., Atlas R.M. Isolation of microorganisms capable of degrading isoquinoline under aerobic conditions. Appl. Environ. Microbiol. 1989. V. 55. P.3247–3249.
  • Amjad H., Iqbal J., Naeem M. Estimation of selected residual antibiotics in muscle, kidney, liver and egg of layer chicken. Proc. Pakistan Acad. Sci. 2006. V. 43. N 1. P.29-37.
  • Andersson M.I., MacGowan A.P. Development of the quinolones. J. Antimicrob. Chemother. 2003. V. 51. Suppl. S1. P.1-11
  • Andries K., Verhasselt P., Guillemont J., Göhlmann H.W.H, Neefs J-M., Winkler H., Van Gestel J., Timmerman P., Zhu M., Lee E., Williams P., de Chaffoy D., Huitric E., Hoffner S., Cambau E., Truffot-Pernot C., Lounis N., Jarlier V. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005. V. 307. P.223–227.
  • Andriole V.T. The quinolones: prospects. In: The Quinolones. - 3rd ed. (Andriole V.T., ed.) San Diego: Academic Press, 2000. C.477–95.
  • Appelbaum PC, Hunter PA. The fluoroquinolone antibacterials: past, present and future perspectives. Int. J. Antimicrob. Agents. 2000. V. 16. P.5-15.
  • Arantes V., Jellison J, Goodell G. Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl. Microbiol. Biotechnol. 2012. 94: 323-338.
  • Araújo N.C.P., Barton V., Jones M., Stocks P.A., Ward S.A., Davies J., Bray P.G., Shone A.E., Cristiano M.L.S., O'Neill P.M. Semi-synthetic and synthetic 1,2,4-trioxaquines and 1,2,4-trioxolaquines: synthesis, preliminary SAR and comparison with acridine endoperoxide conjugates. Bioorg Med Chem Lett, 2009. 19:2038–2043
  • Archelas A., Furneron I.D., Furstoss R. Microbial transformations 11. Regioselective hydroxylation of β-lactams by the fungus Beauveria sulfurescens. Tetrahedron Lett. 1988. 29(50):6611-6613. doi: 10.1016/S0040-4039(00)82410-7
  • Archelas A., Furstoss R., Srairi D., Maurey G. Transformations microbiologiques, 5. Hydroxylation microbiologique de lactames, d'amides et d'imides monocycliques par le champignon Beauveria sulfurescens. Bull Soc Chim Fr. 1986. 2:234-238.
  • Auparakkitanon S, Noonpakdee W, Ralph RK, Denny WA, Wilairat P Antimalarial 9-anilinoacridine compounds directed at hematin. Antimicrob Agents Chemother. 2003. 47:3708–3712.
  • Aurrecoechea JM, Bustos F, López B, Saornil C, Suero R. A new entry into 3-hydroxypyrrolidine derivatives from protected α- or β-amino esters. Arkivoc. 2009. 11:94-104.
  • Baird J.K. Resistance to chloroquine unhinges vivax malaria therapeutics. Antimicrob. Agents. Chemother. 2011. 55:1827–1830.
  • Baker P. Biotransformations. Lab Pract. 1987. 36(7):46-47.
  • Ball P. Quinolone generations: natural history or natural selection? J. Antimicrob. Chemother. 2000a. V. 46 Suppl. T1. P.17-24.
  • Ball P. The quinolones: history and overview. In: The Quinolones, 3rd ed. (Andriole V.T., ed.) San Diego: Academic Press, 2000. p. 1-31.
  • Banasik M, Komura H, Shimoyama M, Ueda K. Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase. J Biol Chem. 1992. 267:1569–1575.
  • Barreiros L, Fernandes A, Ferreira ACS, Pereira H, Bastos MMSM, Manaia CM, Nunes OC. New insights into a bacterial metabolic and detoxifying association responsible for the mineralization of the thiocarbamate herbicide molinate. Microbiology. 2008. 154:1038-1046. doi: 10.1099/mic.0.2007/015297-0
  • Basco L.K., Mitaku S., Skaltsounis A.-L., Ravelomanantosoa N., Tillequin F., Koch M., LeBras J. In vitro activities of furoquinoline and acridone alkaloids against Plasmodium falciparum. Antimicrob. Agents Chemother. 1994. V. 38. N 5. P.1169-1171.
  • Bertrand L, Kremsner PG Clindamycin as an antimalarial drug: review of clinical trials. Antimicrob Agents Chemother. 2002. 46(8):2315-2320. doi: 10.1128/AAC.46.8.2315-2320.2002
  • Betts R.E., Walters D.E., Rosazza J. Microbial transformations of antitumor compounds. 1. Conversion of acronycine to 9-hydroxyacronycine by Cunninghamella echinulata. J. Med. Chem. 1974. V. 17. N 6. P.599-602.
  • Bianchi D, Bosetti A, Cidaria D, Bernardi A, Gagliardi I, D'Amico P (1997) Oxidation of polycyclic aromatic heterocycles by Pseudomonas fluorescens TTC1. Appl Microbiol Biotechnol 47:596–599
  • Boaventura MAD, Lopes RFAP, Takahashi JA (2004) Microorganisms as tools in modern chemistry: the biotransformation of 3-indolylacetonitrile and tryptamine by fungi. Braz J Microbiol 35:345–347
  • Boibessot I, Turner CMR, Watson DG, Goldie E, Connel G, McIntosh A, Grant MH, Skellern GG (2002) Metabolism and distribution of phenanthridine trypanocides in Trypanosoma brucei. Acta Tropica 84:219–228
  • Bot C, Hall BS, Bashir N, Taylor MC, Helsby NA, Wilkinson SR (2010) Trypanocidal activity of aziridinyl nitrobenzamide prodrugs. Antimicrob. Agents Chemother. 54(10):4246-4252. doi: 10.1128/AAC.00800-10
  • Boteva A. A., Krasnykh O. P. The methods of synthesis, modification, and biological activity of 4-quinolones (review). Chem. Heterocycl. Compds. 2009. V. 45. N 7. P.757-785.
  • Bott G, Lingens F (1991) Microbial metabolism of quinoline and related compounds. IX. Degradation of 6-hydroxyquinoline and quinoline by Pseudomonas diminuta 31/1 Fa1 and Bacillus circulans 31/2 A1. Biol Chem Hoppe-Seyler 372:381–383
  • Boyd DR, McMordie RAS, Porter HP, Dalton H, Jenkins RO, Howarth OW (1987) Metabolism of bicyclic aza-arenes by Pseudomonas putida to yield vicinal cis-dihydrodiols and phenols. J Chem Soc Chem Commun 1987:1722–1724
  • Boyd DR, Sharma ND, Dorrity MRJ, Hand MV, McMordie RAS, Malone JF, Porter HP, Dalton H, Chima J, Sheldrake GN (1993) Structure and stereochemistry of cis-dihydro diol and phenol metabolites of bicyclic azaarenes from Pseudomonas putida UV4. J Chem Soc Perkin Trans 1 1993:1065–1071
  • Boyd DR, Sharma ND, Modyanova LV, Carroll JG, Malone JF, Allen CCR, Hamilton JTG, Gibson DT, Parales RE, Dalton H (2002) Dioxygenase-catalyzed cis-dihydroxylation of pyridine-ring systems. Can J Chem 80:589–600
  • Bressler DC, Fedorak PM (2000) Bacterial metabolism of fluorene, dibenzofuran, dibenzothiophene, and carbazole. Can J Microbiol 46:397–409
  • Brighty K.E., Gootz T.D. Chemistry and mechanism of action of the quinolone antibacterials. In: The Quinolones. 3rd ed. (Andriole V.T., ed.) San Diego: Academic Press, 2000. P.33–97.
  • Brocks DR, Mehvar R (2003) Stereoselectivity in the pharmacodynamics and pharmacokinetics of the chiral antimalarial drugs. Clin Pharmacokinet 42:1359–1382
  • Cattoir V, Nordmann P. Plasmid-mediated quinolone resistance in Gram-negative bacterial species: an update. Curr. Med. Chem. 2009. 16: 1028-1046.
  • Chang D, Feiten H-J, Engesser KH, Van Beilen JB, Witholt B, Li Z (2002) Practical syntheses of N-substituted 3-hydroxyazetidines and 4-hydroxypiperidines by hydroxylation with Sphingomonas sp. HXN-200. Org Lett. 4(11):1859-1862. doi: 10.1021/ol025829s
  • Chauhan SS, Sharma M, Chauhan PMS (2010) Trioxaquines: hybrid molecules for the treatment of malaria. Drug News Perspect 23:632–646
  • Chawla R, Singh AK, Yadav LDS (2013) Organocatalysis in synthesis and reactions of epoxides and aziridines. RSC Advances. 3(29):11385-11403. doi: 10.1039/C3RA00175J
  • Chen P, Gao M, Wang DX, Zhao L, Wang MX (2012) Enantioselective biotransformations of racemic and meso pyrrolidine-2,5-dicarboxamides and their application in organic synthesis. J Org Chem. 77:4063-4072. doi: 10.1021/jo300412j
  • Chen Y., Rosazza J.P.N., Reese C.P., Chang H.-Y., Nowakowski M.A., Kiplinger J.P. Microbial models of soil metabolism: biotransformations of danofloxacin. J. Ind. Microbiol. Biotechnol. 1997. V. 19. P.378–384.
  • Clark AM, Hufford CD, Gupta RC, Puri RK, McChesney JD (1984a) Microbial transformation of primaquine by Candida tropicalis. Appl Environ Microbiol 47:537–539.
  • Clark AM, Hufford CD, Puri RK, McChesney JD (1984b) Production of a novel dimeric metabolite of primaquine by Streptomyces rimosus. Appl Environ Microbiol 47:540–543.
  • Coslédan F, Fraisse L, Pellet A, Guillou F, Mordmüller B, Kremsner PG, Moreno A, Mazier D, Maffrand J-P, Meunier B (2008) Selection of a trioxaquine as an antimalarial drug candidate. Proc Nat Acad Sci USA 105:17579–17584.
  • Cui M, Chen F, Fu J, Sheng G, Sun G (2004) Microbial metabolism of quinoline by Comamonas sp. World J Microbiol Biotechnol 20:539–543.
  • Dalhoff A, Schmitz F-J. In vitro antibacterial activity and pharmacodynamics of new quinolones. Eur. J. Clin. Microbiol. Infect. Dis. 2003. 22: 203-221.
  • Deretic V, Pagán-Ramos E, Zhang Y, Dhandayuthapani S, Via LE (1996) The extreme sensitivity of Mycobacterium tuberculosis to the front-line antituberculosis drug isoniazid. Nature Biotechnol 14:1557–1561.
  • Dexian W, Meixiang W (2010) Biotransformations of three-membered (hetero) cyclic nitriles and their applications in organic synthesis. Progress in Chemistry. 22(7):1397-1402.
  • D'hooghe M, Kenis S, Vervisch K, Lategan C, Smith PJ, Chibale K, De Kimpe N (2011) Synthesis of 2-(aminomethyl)aziridines and their microwave-assisted ring opening to 1,2,3-triaminopropanes as novel antimalarial pharmacophores. Eur J Med Chem. 46(2):579–587. doi: 10.1016/j.ejmech.2010.11.037
  • Diethelm S, Carreira EM (2013) Total Synthesis of (±)-Gelsemoxonine. J Am Chem Soc. 135(23):8500-8503. doi: 10.1021/ja208617c
  • Divo A.A., Sartorelli A.C., Patton C.L., Bia F.J. Activity of fluoroquinolone antibiotics against Plasmodium falciparum in vitro. Antimicrob. Agents Chemother. 1988. V. 32. N 8. P.1182-1186.
  • Dovgilevich E.V., Parshikov I.A., Modyanova L.V., Terent'ev P.B., Bulakhov G.A. A novel microbial transformation of γ-carboline derivative 3,6-dimethyl-9-[2-(2-methylpyrid-5-yl)ethyl]-1,2,3,4-tetrahydro-γ-carboline. Mendeleev Communications. 1991. 1:42–43
  • Drlica K, Zhao X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev. 1997. 61: 377-392.
  • Duran N, De Conti R, Rodrigues JAR (2000) Biotransformations by microorganisms, organisms and enzymes: state of art. Bol Soc Chil Quim. 45(1):109-121
  • Duran N, De Conti R, Rodrigues JAR (2000) Biotransformations by microorganisms, organisms and enzymes: state of art. Bol Soc Chil Quím 45:109–121.
  • Edens F. W., Qureshi R. A., Parkhurst C. R., Qureshi M. A., Havenstein G. B., Casas I. A. Characterization of two Escherichia coli isolates associated with poult enteritis and mortality syndrome. Poult. Sci. 1997. V. 76. P.1665–1673.
  • Ensley BD, Ratzkin BJ, Osslund TD, Simon MJ, Wackett LP, Gibson DT (1983) Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222:167–169.
  • Faber K (2004) Biotransformations in Organic Chemistry. Springer, Heidelberg. 321P.
  • Faber K (2011) Biotransformations in Organic Chemistry: A Textbook, 6th ed. Springer, Berlin. 434 p.
  • Fattorusso E, Taglialatela-Scafati O (2009) Marine Antimalarials. Mar Drugs. 7:130-152. doi: 10.3390/md7020130
  • Fetzner S (1998) Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions. Appl Microbiol Biotechnol 49:237–250.
  • Fetzner S, Tshisuaka B, Lingens F, Kappl R, Hüttermann J (1998) Bacterial degradation of quinoline and derivatives–pathways and their biocatalysts. Angew Chem Int Ed 37:576–597.
  • Feula A, Male L, Fossey JS (2010) Diastereoselective preparation of azetidines and pyrrolidines. Org Lett. 12(21):5044–5047. doi: 10.1021/ol102215e
  • Fujioka H., Nishiyama Y., Furukawa H., Kumada N. In vitro and in vivo activities of atalaphillinine and related acridone alkaloids against rodent malaria. // Antimicrob. Agents Chemother. 1989. V. 33. P.6-9.
  • Fujioka, H., Kato N., Fujita M., Fujimura K., Nishiyama Y. Activities of new acridone alkaloid derivatives against Plasmodium yoelii in vitro. Arzneim.-Forsch./Drug Res. 1990. V. 40. P.1026-1029.
  • Fürmeier S, Metzger JO (2003) Fat-Derived aziridines and their N-substituted derivatives: biologically active compounds based on renewable raw materials. Eur J Org Chem. 4:649-659. doi: 10.1002/ejoc.200390105
  • Gatti D., Adami S. New bisphosphonates in the treatment of bone diseases. Drugs Aging. 1999. 15:285–296.
  • Ge J-F, Arai C, Yang M, Md AB, Lu J, Ismail NSM, Wittlin S, Kaiser M, Brun R, Charman SA, Nguyen T, Morizzi J, Itoh I, Ihara M (2010) Discovery of novel benzo[a]phenoxazine SSJ-183 as a drug candidate for malaria. ACS Med Chem Lett 1:360–364.
  • Georg GI, Guan X (1992) Asymmetric synthesis of α-alkylated α-amino acids: azocane-2-carboxylic acids. Tetrahedron Lett. 33:17-20. doi: 10.1016/S0040-4039(00)77662-3
  • Ghorai MK, Das K, Kumar A (2007) A convenient synthetic route to enantiopure N-tosylazetidines from α-amino acids. Tetrahedron Lett. 48:2471–2475. doi: 10.1016/j.tetlet.2007.02.033
  • Gieg LM, Otter A, Fedorak PM (1996) Carbazole degradation by Pseudomonas sp. LD2: metabolic characteristics and the identification of some metabolites. Environ Sci Technol 30:575–585
  • Gomtsyan A, Bayburt EK, Schmidt RG, Zheng GZ, Perner RJ, Didomenico S, Koenig JR, Turner S, Jinkerson T, Drizin I, Hannick SM, Macri BS, McDonald HA, Honore P, Wismer CT, Marsh KC, Wetter J, Stewart KD, Oie T, Jarvis MF, Surowy CS, Faltynek CR, Lee C-H (2005) Novel transient receptor potential vanilloid 1 receptor antagonists for the treatment of pain: structure-activity relationships for ureas with quinoline, isoquinoline, quinazoline, phthalazine, quinoxaline, and cinnoline moieties. J Med Chem 48:744–752
  • Grant DJW, Al-Najjar TR (1976) Degradation of quinoline by a soil bacterium. Microbios 15:177–189.
  • Grishina GV, Veselov IS, Nelyubina YV, Surovaya AN, Zefirov NS (2011) Optically pure trans-1-benzyl-4-aminopiperidin-3-ols. Synthesis and absolute configuration. Arkivoc. 10:107-117. doi: 10.3998/ark.5550190.0012.a09
  • Grogan GJ, Holland HL (2000) The biocatalytic reactions of Beauveria spp. J Mol Catal B Enzym 9:1–32.
  • Gross C, Felsheim R, Wackett LP (2008) Genes and enzymes of azetidine-2-carboxylate metabolism detoxification and assimilation of an antibiotic. J Bacteriol. 190(14):4859-4864. doi: 10.1128/JB.02022-07
  • Guetzoyan L, Yu X-M, Ramiandrasoa F, Pethe S, Rogier C, Pradines B, Cresteil T, Perrée-Fauvet M, Mahy J-P (2009) Antimalarial acridines: synthesis, in vitro activity against P. falciparum and interaction with hematin. Bioorg Med Chem 17:8032–8039.
  • Hamilton P.B., Rosi D., Peruzzotti G.P., Nielson E.D. Microbiological metabolism of naphthyridines. Appl. Microbiol. 1969. V. 17. N 2. P.237-241.
  • Hari G.S., Lee Y.R., Wang X., Lyoo W.S., Kim S.H. New synthetic routes to acronycine, noracronycine, and their analogues. Bull. Korean Chem. Soc. 2010. V. 31. N 8. P.2406-2409.
  • Hassner A (2009) Adventures in stereochemistry and cycloadditions. Bull Israel Chem Soc. 24:20-25
  • Hill JC, Johnson GT (1969) Microbial transformation of phenazines by Aspergillus sclerotiorum. Mycologia 61:452–467.
  • Hocart SJ, Liu H, Deng H, De D, Krogstad FM, Krogstad DJ (2011) 4-Aminoquinolines active against chloroquine-resistant Plasmodium falciparum: basis of antiparasite activity and quantitative structure-activity relationship analyses. Antimicrob. Agents Chemother. 55(5):2233-2244. doi: 10.1128/AAC.00675-10
  • Hodgson DM, Fleming MJ, Xu Z, Lin C, Stanway SJ (2006) 3-Hydroxypyrrolidines from epoxysulfonamides and dimethylsulfoxonium methylide. Chem Commun. 30:3226–3228. doi: 10.1039/B606583J
  • Hüttel W, Hoffmeister D (2010) Fungal biotransformations in pharmaceutical sciences. The Mycota. 10(3):293-317. doi: 10.1007/978-3-642-11458-8_14
  • Hüttel W, Hoffmeister D (2010) Fungal biotransformations in pharmaceutical sciences. In: Hofrichter M (ed), The Mycota, Vol. 10, Industrial Applications, Springer, Berlin, pp 293–317.
  • Inoue K, Habe H, Yamane H, Nojiri H (2006) Characterization of novel carbazole catabolism genes from Gram-positive carbazole degrader Nocardioides aromaticivorans IC177. Appl Environ Microbiol 72:3321–3329
  • Johansen SS, Licht D, Arvin E, Mosbaek H, Hansen AB (1997) Metabolic pathways of quinoline, indole and their methylated analogs by Desulfobacterium indolicum (DSM 3383). Appl Microbiol Biotechnol 47:292–300.
  • Johnson RA, Herr ME, Murray HC, Chidester CG, Han F (1992) Selective Oxygenation of Adamantanes and Other Substrates by Beauveria sulfurescens. J Org Chem. 57(26): 7209-7212. doi: 10.1021/jo00052a039
  • Johnson RA, Herr ME, Murray HC, Fonken GS (1968a) The microbiological oxygenation of azacycloalkanes. Structural determinations leading to transannular reactions. J Org Chem. 33(8):3187-3195. doi: 10.1021/jo01272a035
  • Johnson RA, Herr ME, Murray HC, Reineke LM, Fonken, GS (1968b) The microbiological oxygenation of some azabicycloalkanes. J Org Chem. 33(8):3195-3201. doi: 10.1021/jo01272a036
  • Johnson RA, Murray HC, Reineke LM, Fonken GS (1969) Stereochemistry of microbiological hydroxylation. II. Oxygenation of 1-benzoylalkylpiperidines. J Org Chem. 34(8):2279-2284. doi: 10.1021/jo01260a009
  • Jones M, Mercer AE, Stocks PA, La Pensée LJ, Cosstick R, Park BK, Kennedy ME, Piantanida I, Ward SA, Davies J, Bray PG, Rawe SL, Baird J, Charidza T, Janneh O, O'Neill PM (2009) Antitumour and antimalarial activity of artemisinin-acridine hybrids. Bioorg Med Chem Lett 19:2033–2037
  • Jones RN, Erwin ME, et al. In vitro susceptibility testing and quality control parameters for sarafloxacin (A-56620): a fluoroquinolone used for treatment and control of colibacillosis in poultry. Diagn. Microbiol. Infect. Dis. 1998. 32: 55-64.
  • Jung C.M., Heinze T.M., Strakosha R., Elkins C.A., Sutherland J.B. Acetylation of fluoroquinolone antimicrobial agents by an Escherichia coli strain isolated from a municipal wastewater treatment plant. J. Appl. Microbiol. 2009. V. 106. P.564-571.
  • Kaiser J-P, Feng Y, Bollag J-M (1996) Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions. Microbiol Rev 60:483–498
  • Kalkanidis M, Klonis N, Tilley L, Deady LW (2002) Novel phenothiazine antimalarials: synthesis, antimalarial activity, and inhibition of the formation of beta-haematin. Biochem Pharmacol 63:833–842
  • Kamath AV, Vaidyanathan CS (1990) New pathway for the biodegradation of indole in Aspergillus niger. Appl Environ Microbiol 56:275–280
  • Karl W, Schneider J, Wetzstein H-G. Outlines of an "exploding" network of metabolites generated from the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum. Appl. Microbiol. Biotechnol. 2006. 71: 101-113.
  • Kaur K, Jain M, Kaur T, Jain R (2009) Antimalarials from nature. Bioorg Med Chem 17:3229–3256
  • Kaur K, Jain M, Reddy RP, Jain R (2010) Quinolines and structurally related heterocycles as antimalarials. Eur J Med Chem 45:3245–3264
  • Keating GM, Scott LJ. Moxifloxacin: a review of its use in the management of bacterial infections. Drugs 2004. 64: 2347-2377.
  • Keifer PA, Nagel DL, Cromwell NH (1988) Stereochemistry and bonding in N-substituted-2-phenyl-3-cyanoaziridines. J Heterocycl Chem. 25(2):353–359. doi: 10.1002/jhet.5570250201
  • Kelly SL, Lamb DC, Jackson CJ, Warrilow AGS, Kelly DE (2003) The biodiversity of microbial cytochromes P450. Adv Microb Physiol 47:131–186
  • Khasaeva F.M., Zakharchuk L.M., Netrusov A.I., Parshikov I.A. Biodegradation of pyridine by Arthrobacter sp. Natural Science. In: Young Scientist USA. 2014. V.1, P.50-52.
  • Kiener A. Enzymatic oxidation of methyl groups on aromatic heterocycles: a versatile method for the preparation of heteroaromatic carboxylic acids. Angew Chem Int Ed Engl. 1992. 31:774–775
  • Kieslich K., Wieglepp H., Hoyer G.-A., Rosenberg D. Mikrobiologische Umwandlungen nichtsteroider Strukturen. V. Mikrobiologische Reaktionen von substituierten 1-Äthyl-4-oxo-1,4-dihydrochinolin-3-carbonsäuren. Chem. Ber. 1973. Bd. 106. N 8. P.2636-2642.
  • Kilbane JJ, Ranganathan R, Cleveland L, Kayser KJ, Ribiero C, Linhares MM (2000) Selective removal of nitrogen from quinoline and petroleum by Pseudomonas ayucida IGTN9m. Appl Environ Microbiol 66:688–693
  • Kim D.-W., Heinze T.M., Kim B.-S., Schnackenberg L.K., Woodling K.A., Sutherland J.B. Modification of norfloxacin by a Microbacterium sp. strain isolated from a wastewater treatment plant. Appl. Environ. Microbiol. 2011. V. 77. N 17. P.6100-6108.
  • Kim Y-H, Cerniglia CE. An overview of the fate and effects of antimicrobials used in aquaculture. In: Veterinary Pharmaceuticals in the Environment (Henderson KL, Coats JR, eds). 2010. Oxford University Press, New York.
  • King D.E., Malone R., Lilley S.H. New classification and update on the quinolone antibiotics. Am. Fam. Physician. 2000. V. 61. N 9. P.2741-2748.
  • Kloskowski T, Gurtowska N, Drewa T. Does ciprofloxacin have an obverse and a reverse? Pulm. Pharmacol. Ther. 2010. 23: 373-375.
  • Kontnik R, Clardy J (2008) Codinaeopsin, an antimalarial fungal polyketide. Org Lett 10:4149–4151
  • Kost AN, Modyanova LV (1979) Microbiological transformation of pyridine derivatives. Khim Geterotsikl Soed 10:1299–1313
  • Kumar S, Das SK, Dey S, Maity P, Guha M, Choubey V, Panda G, Bandyopadhyay U (2008) Antiplasmodial activity of [(aryl)arylsulfanylmethyl]pyridine. Antimicrob Agents Chemother 52:705–715
  • Larentis AL, Sampaio HCC, Carneiro CC, Martins OB, Alves TLM (2011) Evaluation of growth, carbazole biodegradation and anthranilic acid production by Pseudomonas stutzeri. Braz J Chem Eng 28:37–44
  • Lee JJ, Yoon J-H, Yang S-Y, Lee S-T (2006) Aerobic biodegradation of 4-methylpyridine and 4-ethylpyridine by newly isolated Pseudonocardia sp. strain M43. FEMS Microbiol Lett 254:95–100
  • Lehman LR, Stewart JD (2001) Filamentous fungi: potentially useful catalysts for the biohydroxylations of non-activated carbon centers. Curr Org Chem 5:439–470
  • Lehman LR, Stewart JD. Filamentous fungi: potentially useful catalysts for the biohydroxylations of non-activated carbon centers. Curr. Org. Chem. 2001. 5: 439-470.
  • Leng DH, Wang DeX, Pan J, Huang ZT, Wang MX (2009) Highly efficient and enantioselective biotransformations of racemic azetidine-2-carbonitriles and their synthetic applications. J Org Chem. 74:6077-6082. doi: 10.1021/jo9011656
  • Lesher GY, Froelich EJ, Gruett MD, Bailey JH, Brundage RP. 1,8-Naphthyridine derivatives. A new class of chemotherapeutic agents. J. Med. Chem. 1962. 5: 1063-1065.
  • Li P, Tong L, Liu K, Wang Y, Wang Y (2009) Indole degrading of ammonia oxidizing bacteria isolated from swine wastewater treatment system. Water Sci Technol 59:2405–2410
  • Li Z, Feiten HJ, Chang D, Duetz WA, Van Beilen JB, Witholt B (2001) Preparation of (R)- and (S)-N-protected 3-hydroxypyrrolidines by hydroxylation with Sphingomonas sp. HXN-200, a highly active, regio- and stereoselective, and easy to handle biocatalyst. J Org Chem. 66(25):8424-8430. doi: 10.1021/jo015826d
  • Licht D, Johansen SS, Arvin E, Ahring BK (1997) Transformation of indole and quinoline by Desulfobacterium indolicum (DSM 3383). Appl Microbiol Biotechnol 47:167–172
  • Lobastova TG, Sukhodolskaya GV, Nikolayeva VM, Baskunov BP, Turchin KF, Donova MV (2004) Hydroxylation of carbazoles by Aspergillus flavus VKM F-1024. FEMS Microbiol Lett 235:51–56
  • Mahmoudi N.,Ciceron L., Franetich J-F., Farhati K., Silvie O., Eling W., Sauerwein R., Danis M., Mazier D., Derouin F. In vitro activities of 25 quinolones and fluoroquinolones against liver and blood stage Plasmodium spp. Antimicrob. Agents Chemother. 2003. V. 47. N 8. P.2636-2639.
  • Martens R, Wetzstein HG, Zadrazil F, Capelari M, Hoffmann P, Schmeer N. Degradation of the fluoroquinolone enrofloxacin by wood-rotting fungi. Appl. Environ. Microbiol. 1996. 62: 4206-4209.
  • Martinsen B, Horsberg TE. Comparative single-dose pharmacokinetics of four quinolones, oxolinic acid, flumequine, sarafloxacin, and enrofloxacin, in Atlantic salmon (Salmo salar) held in seawater at 10°C. Antimicrob. Agents Chemother. 1995. 39: 1059-1064.
  • McGuirk PR, Jefson MR, Mann DD, Elliott NC, Chang P, Cisek EP, Cornell CP, Gootz TD, Haskell SL, Hindahl MS, LaFleur LJ, Rosenfeld MJ, Shryock TR, Silvia AM, Weber FH. Synthesis and structure-activity relationships of 7-diazabicycloalkylquinolones, including danofloxacin, a new quinolone antibacterial agent for veterinary medicine. J. Med. Chem. 1992. 35: 611-620.
  • McKay VA, Thompson SJ, Tran PM, Goodall KJ, Brimble MA, Barker D. Stereoselective synthesis of 4-substituted 4-hydroxypiperidines via epoxidation–ring opening of 4-methylenepiperidines. Synlett. 2010. 17:2631–2635. doi: 10.1055/s-0030-1258778
  • Mendoza A, Perez-Silanes S, Quiliano M, Pabón A, Galiano S, Gonzalez G, Garavito G, Zimic M, Vaisberg A, Aldana I, Monge A, Deharo E (2011) Aryl piperazine and pyrrolidine as antimalarial agents. Synthesis and investigation of structure-activity relationships. Exp Parasitol. 128(2):97-103. doi: 10.1016/j.exppara.2011.02.025
  • Mihovilovic MD, Spina M, Stanetty P (2005) Synthesis and yeast - mediated bioreduction of α-keto-β-lactams bearing a functionalized and rigid side chain. Arkivoc. 5:33-44. doi: 10.3998/ark.5550190.0006.504
  • Miller IM, Wittreich JM, Cook T, Vogel R. The safety and efficacy of topical norfloxacin compared with chloramphenicol for the treatment of external ocular bacterial infections. Eye 6: 111-114.
  • Mitchell MA. Enrofloxacin. J. Exotic Pet Med. 2006. 15: 66-69.
  • Modyanova L.V., Duduchava M.R., Piskunkova N.F., Grishina G.V., Terent'ev P.B., Parshikov I.A. Microbiological Transformation of Piperidine and Pyridine Derivatives. Cheminform. 2010. V.31, N 12. http://dx.doi.org/10.1002/chin.200012047
  • Modyanova LV, Duduchava MR, Piskunkova NF, Grishina GV, Terentyev PB, Parshikov IA (1999) Microbial transformations of piperideine and pyridine derivatives. Chemistry of Heterocyclic Compounds. 33(5):580-586. doi: 10.1007/BF02324642
  • Modyanova LV, Vorobyeva LI, Shibilkina OK, Dovgilevich EV, Terentyev PB, Kost AN (1990) Microbial transformation of nitrogen-containing heterocyclic compounds. I. Hydroxylation of isomeric methyl- and dimethylpyridines by microscopic fungi. Biotekhnologiya 1990(3):24–27
  • Mountfield RJ, Hopper DJ (1998) The formation of 1-hydroxymethylnaphthalene and 6-hydroxymethylquinoline by both oxidative and reductive routes in Cunninghamella elegans. Appl Microbiol Biotechnol 50:379–383
  • Mugnaini C, Pasquini S, Corelli F. The 4-quinolone-3-carboxylic acid motif as a multivalent scaffold in medicinal chemistry. Curr. Med. Chem. 2009. 16: 1746-1767.
  • Müller R, Rappert S (2010) Pyrazines: occurrence, formation and biodegradation. Appl Microbiol Biotechnol 85:1315–1320
  • Muregi FW, Ishih A (2010) Next-generation antimalarial drugs: hybrid molecules as a new strategy in drug design. Drug Dev Res 71:20–32
  • Murphy CD, Clark BR, Amadio J. Metabolism of fluoroorganic compounds in microorganisms: impacts for the environment and the production of fine chemicals. Appl. Microbiol. Biotechnol. 2009. 84: 617-629.
  • Neef G, Eder U, Petzoldt K, Seeger A, Wieglepp H (1982) Microbial hydroxylation of β-carboline derivatives. J Chem Soc Chem Commun 1982:366–367
  • Nguyen QC, Nguyen TT, Yougnia R, Gaslonde T, Dufat H, Michel S, Tillequin F. Acronycine derivatives: a promising series of anti-cancer agents. Anti-Cancer Agents Med. Chem. 2009. 9: 804-815.
  • Nojiri H, Habe H, Omori T (2001) Bacterial degradation of aromatic compounds via angular dioxygenation. J Gen Appl Microbiol 47:279–305
  • Obata H, Kawahara H, Sugiyama A (1997) Microbial transformation of carbazole to indole-3-acetic acid by Flavobacterium sp. OCM-1. Biosci Biotechnol Biochem 61:525–526
  • Oliphant C.M., Green G.M. Quinolones: a comprehensive review. Am. Fam. Physician. 2002. V. 65. N 3. P.455-464.
  • Oshima T, Kawai S, Egami F (1965) Oxidation of indole to indigotin by Pseudomonas indoloxidans. J Biochem 58:259–263
  • Osorio-Lozada A, Tovar-Miranda R, Olivo HF (2008) Biotransformation of N-piperidinylacetophenone with Beauveria bassiana ATCC-7159. J Mol Catal B: Enzym. 55(1-2):30-36. doi: 10.1016/j.molcatb.2007.12.026
  • Ouchiyama N, Zhang Y, Omori T, Kodama T (1993) Biodegradation of carbazole by Pseudomonas spp. CA06 and CA10. Biosci Biotechnol Biochem 57:455–460
  • Pacorel B, Leung SC, Stachulski AV, Davies J, Vivas L, Lander H, Ward SA, Kaiser M, Brun R, O'Neill PM (2010) Modular synthesis and in vitro and in vivo antimalarial assessment of C-10 pyrrole Mannich base derivatives of artemisinin. J Med Chem. 53:633–640. doi: 10.1021/jm901216v
  • Parshikov I. A., Freeman J. P., Lay J. O. Jr., Moody J. D., Williams A. J., Beger R. D., Sutherland J. B. Metabolism of the veterinary fluoroquinolone sarafloxacin by the fungus Mucor ramannianus. Journal of Industrial Microbiology and Biotechnology. 2001b. V. 26. P.140-144.
  • Parshikov I. A., Heinze T. M., Moody J. D., Freeman J. P.,•Williams A. J., Sutherland J. B. The fungus Pestalotiopsis guepini as a model for biotransformation of ciprofloxacin and norfloxacin. Applied Microbiology and Biotechnology. 2001a. V. 56. P.474-477.
  • Parshikov I. A., Moody J. D., Freeman J. P., Lay J.O., Williams A. J., Heinze T. M., Sutherland J. B. Formation of conjugates from ciprofloxacin and norfloxacin in cultures of Trichoderma viride. // Mycologia. 2002. V. 94. N 1. P.1-5.
  • Parshikov I.A., Freeman J.P., Lay J.O. Jr., Beger R.D., Williams A.J., Sutherland J.B. Microbiological transformation of enrofloxacin by the fungus Mucor ramannianus. 100th General Meeting of American Society for Microbiology, Los Angeles, California, May 21-25, 2000b, Q-180.
  • Parshikov I.A., Freeman J.P., Lay J.O. Jr., Moody J.D., Williams A.J., Sutherland J.B. Formation of unusual ciprofloxacin and norfloxacin conjugates by the fungus Trichoderma viride. 100th General Meeting of American Society for Microbiology, Los Angeles,California, May 21–25, 2000a, Q-181.
  • Parshikov I.A., Freeman J.P., Lay J.O. Jr., Moody J.D., Williams A.J., Beger R.D., Sutherland J.B. Metabolism of the veterinary fluoroquinolone sarafloxacin by the fungus Mucor ramannianus. 100th General Meeting of American Society for Microbiology, Los Angeles, California, May 21–25, 2000c, Q-182.
  • Parshikov I.A., Freeman J.P., Lay J.O., Beger R.D., Williams A.J., Sutherland J.B. Microbiological transformation of enrofloxacin by the fungus Mucor ramannianus. Applied and Environmental Microbiology. 2000d. V. 66. N 6. P.2664-2667.
  • Parshikov I.A., Freeman J.P., Williams A.J., Moody J.D., Sutherland J.B. Microbiological transformation of N-acetylphenothiazine by fungi. 99th General Meeting of American Society for Microbiology, Chicago, Illinois, May 30 – June 3, 1999b, Q-258.
  • Parshikov I.A., Heinze T.M., Moody J.D., Freeman J.P., Williams A.J., Sutherland J.B. The fungus Pestalotiopsis guepini. as a model for biotransformation of ciprofloxacin and norfloxacin. 101th General Meeting of American Society for Microbiology, Orlando, Florida, May 20-24, 2001c, Q-191.
  • Parshikov I.A., Heinze T.M., Moody J.D., Williamson J.S. Microbial transformation of the Antimalarial drug Primaquine (8-Aminoquinoline) by Beauveria bassiana. 102th General Meeting of American Society for Microbiology, Salt Lake City, Utah, May 19-23, 2002c, Q-83.
  • Parshikov I.A., Heinze T.M., Williams A.J., Moody J.D., Freeman J.P., Sutherland J.B. Biotransformation of the antibacterial agent cinoxacin by the fungus Beauveria bassiana. 102th General Meeting of American Society for Microbiology, Salt Lake City, Utah, May 19-23, 2002a, Q-78
  • Parshikov I.A., Modyanova L.V., Dovgilevich E.V., Terentyev P.B., Vorobyeva L.I., Grishina G.V. Microbiological Transformations of Nitrogen-Containing Heterocyclic Compounds. Part 3. Microbiological Synthesis of Hydroxy Derivatives of 1-Benzoylpiperidine and 1-Benzoylpyrrolidine. Cheminform. 2010b, v.24, N 38, http://dx.doi.org/10.1002/chin.199338068
  • Parshikov I.A., Moody J.D., Heinze T.M., Freeman J.P., Williams A.J., Sutherland J.B. Transformation of cinoxacin by Beauveria bassiana. // FEMS Microbiol. Lett. 2002b. V. 214. P.133-136.
  • Parshikov I.A., Sutherland J.B. The use of Aspergillus niger cultures for biotransformation of terpenoids. Process Biochemistry. 2014. V.49. N 12. P. 2086-2100. http://dx.doi.org/10.1016/j.procbio.2014.09.005
  • Parshikov I.A., Terent'ev P.B., Modyanova L.V. Microbiological Transformations of Nitrogen-Containing Heterocycles. Cheminform. 2010. V.26, N 30. http://dx.doi.org/10.1002/chin.199530292
  • Parshikov I.A., Terent'ev P.B., Piskunkova N.F., Gracheva R.A., Bulakhov G.A. Microbial Transformation of 4-Phenylpyrrolidone-2 Derivatives by Micellar Fungi. Cheminform. 2010a. V. 29. N 1. http://dx.doi.org/10.1002/chin.199801032
  • Parshikov I.A., Terentyev P.B., Modyanova L.V., Duduchava M.R., Dovgilevich E.V., Butakoff K.A. Microbiological Transformation of 9-Amino-1,2,3,4,5,6,7,8- octahydroacridine. Cheminform. 2010c, v.26, N 10, http://dx.doi.org/10.1002/chin.199510042
  • Parshikov IA, Freeman JP, Williams AJ, Moody JD, Sutherland JB (1999) Biotransformation of N-acetylphenothiazine by fungi. Applied Microbiology and Biotechnology. 52:553–557
  • Parshikov IA, Modyanova LV, Dovgilevich EV, Terentyev PB, Vorobyeva LI, Grishina GV (1992) Microbiological transformation of nitrogen-containing heterocyclic compounds. 3. Microbiological synthesis of hydroxy derivatives of 1-benzoylpiperidine and 1-benzoylpyrrolidine. Chemistry of Heterocyclic Compounds. 28(2):159-162. doi: 10.1007/BF00473936
  • Parshikov IA, Netrusov AI, Sutherland JB Microbial transformation of antimalarial terpenoids. Biotechnology Advances. 2012. 30(6):1516–1523. doi: 10.1016/j.biotechadv.2012.03.010
  • Parshikov IA, Terent'ev PB, Modyanova LV, Duduchava MR, Dovgilevich EV, Butakov KA (1994a) Microbial transformations of 9-amino-1,2,3,4,5,6,7,8-octahydroacridine. Chemistry of Heterocyclic Compounds 30:627–628
  • Parshikov IA, Terentyev PB, Modyanova LV (1994b) Microbial transformation of nitrogenous heterocycles. Khim Geterotsikl Soed 1994(11-12):1510–1535.
  • Parshikov, I.A., Heinze T.M., Williams A.J., Moody J.D., Freeman J.P., Sutherland J.B. Biotransformation of the antibacterial agent cinoxacin by the fungus Beauveria bassiana. FEMS Microbiology Letters. 2002b. V.214. P.133-136.
  • Parshikov I.A., Muralieedharan K.M., Avery M.A., Williamson J.S. Hydroxylation of 10-deoxoartemisinin by Cunninghamella elegans. Journal of Natural Products. 2004a. V.67. N 9. P. 1595-1597.
  • Parshikov I.A., Muralieedharan K.M., Avery M.A., Williamson J.S. Transformation of artemisinin by Cunninghamella elegans. Applied Microbiology and Biotechnology. 2004b. V.64. N 6. P. 782-786.
  • Parshikov I.A., Miriala B., Avery M.A., Williamson J.S. Hydroxylation of 10-deoxoartemisinin to 15-hydroxy-10-deoxoartemisinin by Aspergillus niger. Biotechnology Letters. 2004c. V.26. N 7. P. 607-610.
  • Parshikov I.A., Miriyala B., Muralieedharan K.M., Illendula A., Avery M.A., Williamson J.S. Biocatalysis of the antimalarial artemisinin by Mucor ramannianus strains. Pharmaceutical Biology. 2005. V.43. N 7. P. 579-582.
  • Parshikov IA, Miriyala B, Muraleedharan KM, Avery MA, Williamson JS. Microbial transformation of artemisinin to 5-hydroxyartemisinin by Eurotium amstelodami and Aspergillus niger. Journal of Industrial Microbiology and Biotechnology. 2006. V.33. N 5. P. 349-352.
  • Peters W (1999) The evolution of tafenoquine–antimalarial for a new millennium? J Roy Soc Med 92:345–352
  • Petersen M, Kiener A (1999) Biocatalysis: preparation and functionalization of N-heterocycles. Green Chem. 1:99–106. doi: 10.1039/A809538H
  • Petersen M, Kiener A (1999) Biocatalysis: preparation and functionalization of N-heterocycles. Green Chem 1:99–106
  • Prachayasittikul S, Treeratanapiboon L, Ruchirawat S, Prachayasittikul V (2009) Novel activities of 1-adamantylthiopyridines as antibacterial, antimalarials and anticancers. EXCLI J 8:121–129
  • Prasad GS, Girisham S, Reddy SM (2009) Studies on microbial transformation of meloxicam by fungi. J Microbiol Biotechnol 19:922–931
  • Radic Z, Sit RK, Kovarik Z, Berend Z, Garcia E, Zhang L, Amitai G, Green C, Radic B, Fokin VV, Sharpless KB, Taylor P (2012) Refinement of structural leads for centrally acting oxime reactivators of phosphylated cholinesterases. J Biol Chem. 287(15):11798–11809. doi: 10.1074/jbc.M111.333732
  • Rajini KS, Aparna P, Sasikala C, Ramana CV (2011) Microbial metabolism of pyrazines. Crit Rev Microbiol 37:99–112
  • Ray L, Das Gupta C, Majumdar S K (1983) Microbiological reduction of quininone to quinidine. Appl Environ Microbiol 45:1935–1936
  • Refaie FM, Esmat AY, Gawad SMA, Ibrahim AM, Mohamed MA (2005) The antihyperlipidemic activities of 4(3H)-quinazolinone and two halogenated derivatives in rats. Lipids Health Dis 4:22, p. 1–11
  • Ren D, Zhang X, Yan K, Yuan S, Lu X (2006) Studies on the degradation of indole using white rot fungus. Fresenius Environ Bull 15:1238–1243
  • Resnick SM, Torok DS, Gibson DT (1993) Oxidation of carbazole to 3-hydroxycarbazole by naphthalene 1,2-dioxygenase and biphenyl 2,3-dioxygenase. FEMS Microbiol Lett 113:297–302
  • Richardson DW, Wyso EM (1960) Human pharmacology of guanethidine. Annals of the New York Academy of Sciences. 88: 944-955. doi: 10.1111/j.1749-6632.1960.tb20086.x
  • Rigos G, Troisi GM. Antibacterial agents in Mediterranean finfish farming: a synopsis of drug pharmacokinetics in important euryhaline fish species and possible environmental implications. Rev. Fish Biol. Fisheries. 2005. 15: 53-73.
  • Rios R, Ibrahem I, Vesely J, Sundén H, Córdova A (2007) Organocatalytic asymmetric 5-hydroxypyrrolidine synthesis: a highly enantioselective route to 3-substituted proline derivatives. Tetrahedron Lett. 48:8695-8699. doi: 10.1016/j.tetlet.2007.10.028
  • Robicsek A., Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, Bush K, Hooper DC. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nature Med. 2006. 12: 83-88.
  • Rocco F (2003) Quinine: Malaria and the Quest for a Cure that Changed the World. Harper Collins, New York, 348 p
  • Röger P, Erben A, Lingens F (1990) Microbial metabolism of quinoline and related compounds. IV. Degradation of isoquinoline by Alcaligenes faecalis Pa and Pseudomonas diminuta 7. Biol Chem Hoppe-Seyler 371:511–513
  • Romanova NN, Tallo TG, Bundel YG (1995) Synthesis and stereochemistry of chiral azetidin-2-ones and azetidine-2-thiones. 3. Stereodirected construction of the β-lactam fragment of the thienamycin molecule. Chem Heterocycl Compd. 31(2):223-226. doi: 10.1007/BF01169684
  • Rothenburger S, Atlas RM (1993) Hydroxylation and biodegradation of 6-methylquinoline by pseudomonads in aqueous and nonaqueous immobilized-cell bioreactors. Appl Environ Microbiol 59:2139–2144
  • Rui L, Reardon KF, Wood TK (2005) Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds. Appl Microbiol Biotechnol 66:422–429
  • Sabbour MS, El Bokl MA, Osman LM. Experiences on the efficacy and safety of nalidixic acid, oxolinic acid, cinoxacin and norfloxacin in the treatment of urinary tract infections (UTI). Infection 12: 377-380.
  • Saliba KJ, Kirk K (1998) Clotrimazole inhibits the growth of Plasmodium falciparum in vitro. Trans Roy Soc Trop Med Hyg 92:666–667
  • Sappal R., Chaudhary R.K., Sandhu H.S., Sidhu P.K. Pharmacokinetics, urinary excretion and plasma protein binding of danofloxacin following intravenous administration in buffalo calves (Bubalus bubalis). Vet. Res. Commun. 2009. V. 33. N 7. P.659-667.
  • Sarma P.S. Norfloxacin: a new drug in the treatment of falciparum malaria. Ann. Intern. Med. 1989. V. 111. P.336-337.
  • Sasikala C, Ramana CV, Rao PR (1994) Photometabolism of heterocyclic aromatic compounds by Rhodopseudomonas palustris OU 11. Appl Environ Microbiol 60:2187–2190
  • Schellhorn C. Classification of quinolones by V. Andriole. Infection. 1998. V. 26. N 1. P.46.
  • Schwarz G, Bauder R, Speer M, Rommel TO, Lingens F (1989) Microbial metabolism of quinoline and related compounds. II. Degradation of quinoline by Pseudomonas fluorescens 3, Pseudomonas .putida 86, and Rhodococcus spec B1. Biol Chem Hoppe-Seyler 370:1183–1189
  • Seebacher W, Weis R (2011) Novel antimalarial 3-azabicyclo[3.2.2]nonane derivatives. European patent N 2301627A1, 30.03.2011.
  • Sellyei B., Varga Z., Szentesi-Samu K., Kaszanyitzky E., Magyar T. Antimicrobial susceptibility of Pasteurella multocida isolated from swine and poultry. // Acta Vet. Hung. 2009. V. 57. N 3. P.357-367.
  • Sharma PC, Jain A, Jain S, Pahwa R, Yar MS. Ciprofloxacin: review on developments in synthetic, analytical, and medicinal aspects. J. Enz. Inhib. Med. Chem. 2010. 25: 577-589.
  • Sharma R, Samadhiya P, Srivastava SD, Srivastava SK (2011) Synthesis and biological activity of 2-oxo-azetidine derivatives of phenothiazine. Org Commun. 4(2):42-51.
  • Shibuya H, Kitamura C, Maehara S, Nagahata M, Winarno H, Simanjuntak P, Kim H-S, Wataya Y, Ohashi K (2003) Transformation of Cinchona alkaloids into 1-N-oxide derivatives by endophytic Xylaria sp. isolated from Cinchona pubescens. Chem Pharm Bull 51:71–74
  • Shih TL, Liang MT, Wu KD, Lin CH (2011) Synthesis of polyhydroxy 7- and N-alkyl-azepanes as potent glycosidase inhibitors. Carbohydr Res. 346(2):183–190. doi: 10.1016/j.carres.2010.11.014
  • Shih TL, Yang RY, Li ST, Chiang CF, Lin CH (2007) Expeditious synthesis of tri- and tetrahydroxyazepanes from D-(-)-quinic acid as potent glycosidase inhibitors. J Org Chem. 72:4258-4261. doi: 10.1021/jo070058x
  • Shukla OP (1984) Microbial transformation of pyridine compounds. Proc Ind Acad Sci Chem Sci 93:1143–1153
  • Shukla OP (1986) Microbial transformation of quinoline by a Pseudomonas sp. Appl Environ Microbiol 51:1332–1342
  • Shukla OP (1987) Microbiological transformation and biodegradation of quinoline: isolation and characterization of quinoline-degrading bacteria and identification of early intermediates. Biol Mem (Lucknow) 13:115–131
  • Siebers-Wolff S, Arfmann H-A, Abraham W-R, Kieslich K (1993) Microbiological hydroxylation and N-oxidation of cinchona alkaloids. Biocatalysis 8:47–58
  • Silva E.O., Carvalho T.C., Parshikov I.A., Santos R.A., Emery F.S., Furtado N.A.J.C. Cytotoxicity of lapachol metabolites produced by probiotics. Letters in Applied Microbiology. 2014. V.59. N 1. P. 108-114.
  • Singh P, Sachdeva S, Raj R, Kumar V, Mahajan MP, Nasser S, Vivas L, Gut J, Rosenthal PJ, Feng TS, Chibale K (2011) Antiplasmodial and cytotoxicity evaluation of 3-functionalized 2-azetidinone derivatives. Bioorg Med Chem Lett. 21(15):4561-4563. doi: 10.1016/j.bmcl.2011.05.119
  • Singh P, Singh P, Kumar M, Gut J, Rosenthal PJ, Kumar K, Kumar V, Mahajan MP, Bisetty K. Synthesis, docking and in vitro antimalarial evaluation of bifunctional hybrids derived from β-lactams and 7-chloroquinoline using click chemistry. Bioorg. Med. Chem. Lett. 2012 V. 22. N 1. P.57-61. doi: 10.1016/j.bmcl.2011.11.082
  • Sisca TS, Heel RC, Romankiewicz JA. Cinoxacin—A review of its pharmacological properties and therapeutic efficacy in the treatment of urinary tract infections. Drugs. 1983. 25: 544-569.
  • Srairi D, Maurey G (1987) Hydroxylations microbiologiques de pyrrolidinones-2. Bull Soc Chim Fr. 2:297-301.
  • Stephan I, Tshisuaka B, Fetzner S, Lingens F (1996) Quinaldine 4-oxidase from Arthrobacter sp Rü61a, a versatile procaryotic molybdenum-containing hydroxylase active towards N-containing heterocyclic compounds and aromatic aldehydes. Eur J Biochem 236:155–162
  • Sugino A, Peebles CL, Kreuzer KN, Cozzarelli NR. Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc. Nat. Acad. Sci. USA. 1977. 74: 4767-4771.
  • Sukul P, Spiteller M (2007) Fluoroquinolone antibiotics in the environment. Rev Environ Contam Toxicol. 191:131–162. doi: 10.1007/978-0-387-69163-3_5
  • Sun H, Millar KM, Yang J, Abboud K, Horenstein BA (2000) A new asymmetric route to substituted piperidines: synthesis of N-alkyl-3,4-dihydroxy-5-alkylpiperidines. Tetrahedron Lett. 41(16):2801-2804. doi: 10.1016/S0040-4039(00)00267-7
  • Sutherland JB, Cross EL, Heinze TM, Freeman JP, Moody JD (2005) Fungal biotransformation of benzo[f]quinoline, benzo[h]quinoline, and phenanthridine. Appl Microbiol Biotechnol 67:405–411.
  • Sutherland JB, Evans FE, Freeman JP, Williams AJ (1996) Biotransformation of quinoxaline by Streptomyces badius. Lett Appl Microbiol 22:199–201.
  • Sutherland JB, Evans FE, Freeman JP, Williams AJ, Deck J, Cerniglia CE (1994b) Identification of metabolites produced from acridine by Cunninghamella elegans. Mycologia 86:117–120.
  • Sutherland JB, Freeman JP, Heinze TM, Moody JD, Parshikov IA, Williams AJ, Zhang D (2001) Oxidation of phenothiazine and phenoxazine by Cunninghamella elegans. Xenobiotica 31:799–809.
  • Sutherland JB, Freeman JP, Williams AJ (1998a) Biotransformation of isoquinoline, phenanthridine, phthalazine, quinazoline, and quinoxaline by Streptomyces viridosporus. Appl Microbiol Biotechnol 49:445–449
  • Sutherland JB, Freeman JP, Williams AJ, Cerniglia CE (1994a) N-oxidation of quinoline and isoquinoline by Cunninghamella elegans. Exp Mycol 18:271–274
  • Sutherland JB, Freeman JP, Williams AJ, Deck J (1998b) Metabolism of cinnoline to N-oxidation products by Cunninghamella elegans and Aspergillus niger. J Ind Microbiol Biotechnol 21:225–227
  • Sutherland JB, Freeman JP, Williams AJ, Deck J (1999) Biotransformation of phthalazine by Fusarium moniliforme and Cunninghamella elegans. Mycologia 91:114–116.
  • Sutherland JB, Heinze TM, Pearce MG, Deck J, Williams AJ, Freeman JP (2009) Biotransformation of acridine by Mycobacterium vanbaalenii. Environ Toxicol Chem 28:61–64.
  • Sutherland JB, Heinze TM, Schnackenberg LK, Freeman JP, Williams AJ (2011) Biotransformation of quinazoline and phthalazine by Aspergillus niger. J Biosci Bioeng 111:333–335.
  • Taggart JV, Earle DP, Berliner RW, Welch WJ, Zubrod CG, Jailer JW, Kuhn BH, Norwood J, Shannon JA (1948) Studies on the chemotherapy of the human malarias. V. The antimalarial activity of quinacrine. J Clin Invest 27:93–97.
  • Takayama T, Umemiya H, Amada H, Yabuuchi T, Shiozawa F, Katakai H, Takaoka A, Yamaguchi A, Endo M, Sato M (2010) Pyrrole derivatives as potent inhibitors of lymphocyte-specific kinase: structure, synthesis, and SAR. Bioorg Med Chem Lett 20:108–111.
  • Taniguchi T, Ogasawara K (2000) A diastereocontrolled synthesis of (+)-febrifugine: a potent antimalarial piperidine alkaloid. Org Lett. 2(20):3193–3195. doi: 10.1021/ol006384f
  • Terent'ev PB, Zilberstein TM, Borisenko AA, Shmorgunov VA, Piskunkova NF, Grishina GV (2003) Transformation of 1,2,5,6-tetrahydropyridines with mycellar fungi. Chemistry of Heterocyclic Compounds. 39(7):885-894. doi: 10.1023/A:1026142220384
  • Terent'ev PB, Parshikov IA, Grishina GV, Piskunkova NF, Chumakov TI, Bulakhov GA (1997) Hydroxylation of the double bond in 1-benzyl-3-methyl-Δ3-piperidine by mycelium fungi. Chemistry of Heterocyclic Compounds. 33(5): 619-620. doi: 10.1007/BF02291950
  • Teuscher G, Teuscher E (1965) 5-Hydroxyindole-3-acetic acid as a metabolic product of indole-3-acetic acid produced by ergot fungus. Phytochemistry 4:511–515.
  • Thibodeaux CJ, Chang WC, Liu HW (2012) Enzymatic chemistry of cyclopropane, epoxide, and aziridine biosynthesis. Chem Rev. 112(3):1681-1709. doi: 10.1021/cr200073d
  • Vale N, Moreira R, Gomes P (2009) Primaquine revisited six decades after its discovery. Eur J Med Chem 44:937–953.
  • Van Herwijnen R, de Graaf C, Govers HAJ, Parsons JR (2004) Estimation of kinetic parameter for the biotransformation of three-ring azaarenes by the phenanthrene-degrading strain Sphingomonas sp LH128. Environ Toxicol Chem 23:331–338.
  • Vickers S, Polsky SL (2000) The biotransformation of nitrogen containing xenobiotics to lactams. Curr Drug Metab. 1(4):357-389. doi: 10.2174/1389200003338929
  • Vickers S, Polsky SL (2000) The biotransformation of nitrogen containing xenobiotics to lactams. Curr Drug Metab 1:357–389.
  • Vorobyeva LI, Parshikov IA, Dorre M, Dovgilevich EV, Modyanova LV, Terentyev PB, Nikishova NG. Microbial transformations of nitrogen-containing heterocyclic compounds. II. Hydroxylation of ethylpyridines by microscopic fungi. Biotekhnologiya 1990. N 4. P.24–27.
  • Waldau D, Methling K, Mikolasch A, Schauer F. Characterization of new oxidation products of 9H-carbazole and structure related compounds by biphenyl-utilizing bacteria. Appl Microbiol Biotechnol. 2009. 81:1023–1031.
  • Walsh JJ, Coughlan D, Heneghan N, Gaynor C, Bell A. A novel artemisinin-quinine hybrid with potent antimalarial activity. Bioorg Med Chem Lett. 2007. 17:3599–3602.
  • Walsh JJ, Coughlan D, Heneghan N, Gaynora C, Bell A (2007) A novel artemisinin–quinine hybrid with potent antimalarial activity. Bioorg Med Chem Lett. 17:3599–3602. doi: 10.1016/j.bmcl.2007.04.054
  • Wang F, Langley R, Gulten G, Dover LG, Besra GS, Jacobs WR, Sacchettini JC (2007) Mechanism of thioamide drug action against tuberculosis and leprosy. J Exp Med 204:73–78
  • Waring MJ, Wakelin LPG, Lee JS (1975) A solvent-partition method for measuring the binding of drugs to DNA. Application to the quinoxaline antibiotics echinomycin and triostin A. Biochim Biophys Acta 407:200–212
  • Watson GK, Houghton C, Cain RB (1974) Microbial metabolism of the pyridine ring. The hydroxylation of 4-hydroxypyridine to pyridine 3,4-diol (3,4-dihydroxypyridine) by 4-hydroxypyridine 3-hydroxylase. Biochem J 140:265–276
  • Watt G., Shanks G. D., Edstein M.D., Pavanand K., Webster H.K., Wechgritaya S. Ciprofloxacin treatment of drug-resistant falciparum malaria. // J. Infect. Dis. 1991. V. 164. P.602-604.
  • Weintraub PM, Sabol JS, Kane JM, Borcherding DR (2003) Recent advances in the synthesis of piperidones and piperidines. Tetrahedron. 59(17):2953–2989. doi: 10.1016/S0040-4020(03)00295-3
  • Wetzstein H.-G. Biologische Abbaubarkeit der Gyrasehemmer: Chinolone in der Umwelt. Pharmazie in unserer Zeit. 2001. V. 30, P.450–457.
  • Wetzstein H.-G. Comparative mutant prevention concentrations of pradofloxacin and other veterinary fluoroquinolones indicate differing potentials in preventing selection of resistance. Antimicrob. Agents Chemother. 2005. V. 49. N 10. P.4166-4173.
  • Wetzstein H.-G., Dalhoff A., Karl W. BAY 12-8039, a new 8-methoxyquinolone, is degraded by the brown rot fungus Gloeophyllum striatum. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy. - Toronto, Canada, 1997. - Abstract F 157. P.172.
  • Wetzstein H.-G., Hallenbach W. Tuning of antibacterial activity of a cyclopropyl fluoroquinolone by variation of the substituent at position C-8. J. Antimicrob. Chemother. 2011. 66: 2801-2808.
  • Wetzstein H.-G., Schneider J., Karl W. Metabolite proving fungal cleavage of the aromatic core part of a fluoroquinolone antibiotic. AMB Express 2012. V. 2. N 3. doi:10.1186/2191-0855-2-3.
  • Wetzstein H.-G., Schneider J., Karl W. Patterns of metabolites produced from the fluoroquinolone enrofloxacin by basidiomycetes indigenous to agricultural sites. Appl. Microbiol. Biotechnol. 2006. V. 71. P.90-100.
  • Wetzstein H.-G., Stadler M., Tichy H.-V., Dalhoff A., Karl W. Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus Gloeophyllum striatum. Appl. Environ. Microbiol. 1999. V. 65. N 4. P.1556-1563.
  • Wetzstein H-G, Schmeer N, Karl W. Degradation of the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum: Identification of metabolites. Appl. Environ. Microbiol. 1997. Volume: 63 Pages: 4272-4281.
  • Wetzstein H-G, Schneider J, Karl W. Comparative biotransformation of fluoroquinolone antibiotics in matrices of agricultural relevance. In: Veterinary Pharmaceuticals in the Environment (Henderson KL, Coats JR, eds). 2010. Oxford University Press, New York.
  • Wieser M, Fujii N, Yoshida T, Nagasawa T. Carbon dioxide fixation by reversible pyrrole-2-carboxylate decarboxylase from Bacillus megaterium PYR2910. Eur J Biochem. 1998. 257:495–499.
  • Williams A.J., Deck J.D., Freeman J.P., Chiarelli M.P., Adjei T.M., Heinze T.M., Sutherland J.B. Biotransformation of flumequine by the fungus Cunninghamella elegans. Chemosphere. 2007. V. 67. P.240-243
  • Williams A.J., Parshikov I.A., Moody J.D., Heinze T.M., Freeman J.P., Sutherland J.B. The metabolism of two antibacterial agents, norfloxacin and sarafloxacin by the saprobic fungus Trichoderma sp. during growth on the rise hulls. 101th General Meeting of American Society for Microbiology, Orlando, Florida, May 20-24, 2001, Q-195.
  • Williams, A. J., I. A. Parshikov, J. D. Moody, T. M. Heinze, and J. B. Sutherland. Fungal transformation of an antimicrobial fluoroquinolone drug during growth on poultry litter materials. The Journal of Applied Poultry Research. . 2004. 13: 235-240.
  • Williamson J.S., Parshikov I.A.,Avery M.A. Biotransformations of Artemisinin. in: - Recent Progress in Medicinal Plants, (Phytochemistry and Pharmacology). 2007, V. 17, P. 115-138.
  • Willumsen PA, Johansen JE, Karlson U, Hansen BM. Isolation and taxonomic affiliation of N-heterocyclic aromatic hydrocarbon-transforming bacteria. Appl Microbiol Biotechnol. 2005. 67:420–428.
  • Willumsen PA, Nielson JK, Karlson U. Degradation of phenanthrene-analogue azaarenes by Mycobacterium gilvum strain LB307T under aerobic conditions. Appl Microbiol Biotechnol. 2001. 56:539–544.
  • Wright AD, Goclik E, König GM, Kaminsky R. Lepadins D-F: antiplasmodial and antitrypanosomal decahydroquinoline derivatives from the tropical marine tunicate Didemnum sp. J Med Chem. 2002 45(14):3067-3072. doi: 10.1021/jm0110892
  • Yang W, Davis PJ. Microbial models of mammalian metabolism: biotransformations of N-methylcarbazole using the fungus Cunninghamella echinulata. Drug Metab Dispos. 1992. 20:38–46.
  • Yasuhara A, Akiba-Goto M, Fujishiro K, Uchida H, Uwajima T, Aisaka K. Production of aldehyde oxidases by microorganisms and their enzymatic properties. J Biosci Bioeng. 2002. 94:124–129.
  • Yoshida T, Sada Y, Nagasawa T. Bioconversion of 2,6-dimethylpyridine to 6-methylpicolinic acid by Exophiala dermatitidis (Kano) de Hoog DA5501 cells grown on n-dodecane. Appl Microbiol Biotechnol. 2010. 86:1165–1170.
  • Zefirov NS, Agapova SR, Bulakhova IM, Terent'ev PB, Vasyukova NI, Modyanova LV. Microbiological transformation of nitrogen-containing heterocyclic compounds. Izv Ross Akad Nauk Ser Biol. 1995. (3):367–371.
  • Zefirov NS, Agapova SR, Terentiev PB, Bulakhova IM, Vasyukova NI, Modyanova LV. Degradation of pyridine by Arthrobacter crystallopoietes and Rhodococcus opacus strains. FEMS Microbiol Lett. 1994. 118:71–74.
  • Zefirov NS, Terentiev PB, Modyanova LV, Dovgilevich EV. Regio- and stereoselective hydroxylation of some nitrogen heterocyclic compounds by microorganisms. Ind J Chem. 1993 32B:54–57.

Subjects

MICROBIAL TRANSFORMATION
10.1007/BF01172863
NITROGENOUS HETEROCYCLES
10.1007/BF01172863
FUNGI
10.1007/BF02291950