Published December 31, 2009 | Version v1
Journal article Restricted

Caloramator australicus sp. nov., a thermophilic, anaerobic bacterium from the Great Artesian Basin of Australia

Description

Christopher D. Ogg and Bharat K. C. Patel (2009): Caloramator australicus sp. nov., a thermophilic, anaerobic bacterium from the Great Artesian Basin of Australia. International Journal of Systematic and Evolutionary Microbiology 59: 95-101, DOI: 10.1099/ijs.0.000802-0

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:49169529CE0AFFE3F847FFBBFFB6FFE2
URL
http://publication.plazi.org/id/49169529CE0AFFE3F847FFBBFFB6FFE2

References

  • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. (1997). Gapped BLAST and PSI- BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402.
  • Andrews, K. T. & Patel, B. K. C. (1996). Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46, 265-269.
  • Bochner, B. R. (1989). Sleuthing out bacterial identities. Nature 339, 157-158.
  • Brock, T. D. & Freeze, H. (1969). Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98, 289-297.
  • Chrisotomos, S., Patel, B. K. C., Dwivedi, P. P. & Denman, S. E. (1996). Caloramator indicus sp. nov., a new thermophilic anaerobic bacterium isolated from deep-seated nonvolcanically heated waters of an Indian artesian aquifer. Int J Syst Bacteriol 46, 497-501.
  • Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam, S. A., McGarrell, D. M., Garrity, G. M. & Tiedje, J. M. (2005). The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33, D294-D296.
  • Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791.
  • Greenberg, A. E., Clesceri, L. S. & Eaton, A. D. (1992). Estimation of bacterial density. In Standard Methods for the Examination of Water and Waste Water, pp. 49-50. Washington, DC: American Society for Microbiology.
  • Habermahl, M. A. (1980). The Great Artesian Basin, Australia. BMR J Aust Geol Geophys 5, 9-38.
  • Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95-98.
  • Jukes, T. H. & Cantor, C. R. (1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21-132. Edited by H. N. Munro. New York: Academic Press.
  • Kanso, S. & Patel, B. K. C. (2003). Microvirga subterranea gen. nov., sp nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 53, 401-406.
  • Kanso, S., Greene, A. C. & Patel, B. K. C. (2002). Bacillus subterraneus sp. nov., an iron- and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 52, 869-874. Kashefi, K., Holmes, D. E., Baross, J. A. & Lovley, D. R. (2003). Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the ''Bag City'' hydrothermal vent. Appl Environ Microbiol 69, 2985-2993. Love, C. A., Patel, B. K. C., Nichols, P. D. & Stackebrandt, E. (1993). Desulfotomaculum australicum sp. nov., a thermophilic sulfatereducing bacterium isolated from the Great Artesian Basin of Australia. Syst Appl Microbiol 16, 244-251.
  • Lovley, D. R. (1997). Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol Rev 20, 305-313.
  • Lovley, D. R. & Phillips, E. J. P. (1986). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51, 683-689.
  • Lovley, D. R. & Phillips, E. J. P. (1988). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54, 1472-1480. Marmur, J. (1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208-218.
  • Marmur, J. & Doty, P. (1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109-118.
  • Patel, B. K. C., Morgan, H. W. & Daniel, R. M. (1985a). A simple and efficient method for preparing and dispensing anaerobic media. Biotechnol Lett 7, 277-288.
  • Patel, B. K. C., Morgan, H. W. & Daniel, R. M. (1985b). Fervidobacterium nodosum gen. nov. sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141, 63-69. Patel, B. K. C., Monk, C., Littleworth, H., Morgan, H. W. & Daniel, R. M. (1987). Clostridium fervidus sp. nov., a new chemorganotrophic acetogenic thermophile. Int J Syst Bacteriol 37, 123-126.
  • Ramamoorthy, S., Sass, H., Langner, H., Schumann, P., Kroppenstedt, R. M., Spring, S., Overmann, J. & Rosenzweig, R. F. (2006). Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium Caloramator australicus sp. nov.
  • isolated from pristine freshwater lake sediments. Int J Syst Evol Microbiol 56, 2729-2736.
  • Redburn, A. C. & Patel, B. K. C. (1994). Desulfovibrio longreachii sp. nov., a sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. FEMS Microbiol Lett 115, 33-38.
  • Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406-425. Sorensen, J. (1982). Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl Environ Microbiol 43, 319-324.
  • Spanevello, M. D., Yamamoto, H. & Patel, B. K. C. (2002). Thermaerobacter subterraneus sp. nov., a novel aerobic bacterium from the Great Artesian Basin of Australia, and emendation of the genus Thermaerobacter. Int J Syst Evol Microbiol 52, 795-800. Spratt, H. G., Jr, Siekmann, E. C. & Hodson, R. E. (1994). Microbial manganese oxidation in saltmarsh surface sediments using a leuco crystal violet manganese oxide detection technique. Estuar Coast Shelf Sci 38, 91-112.
  • Van de Peer, Y., Jansen, J., De Rijk, P. & De Wachter, P. (1997). Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 25, 111-116.
  • Wolin, E. A., Wolin, M. J. & Wolfe, R. S. (1963). Formation of methane by bacterial extracts. J Biol Chem 238, 2882-2886.
  • Zavarzina, D. G., Tourova, T. P., Kuznetsov, B. B., Bonch- Osmolovskaya, E. A. & Slobodkin, A. I. (2002). Thermovenabulum ferriorganovorum gen. nov., sp. nov., a novel thermophilic, anaerobic, endospore-forming bacterium. Int J Syst Evol Microbiol 52, 1737- 1743.
  • Zeikus, J. G., Hegge, P. W. & Anderson, M. A. (1979). Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 122, 41-48.