Published May 2, 2019 | Version v1
Dataset Open

Pythia8 Quark and Gluon Jets for Energy Flow

Description

Two datasets of quark and gluon jets generated with Pythia 8, one with all kinematically realizable quark jets and one that excludes charm and bottom quark jets (at the level of the hard process). The one without c and b jets was originally used in Energy Flow Networks: Deep Sets for Particle Jets. Generation parameters are listed below:

  • Pythia 8.226 (without bc jets), Pythia 8.235 (with bc jets), s=14TeV
  • Quarks from WeakBosonAndParton:qg2gmZq, gluons from WeakBosonAndParton:qqbar2gmZg with the Z decaying to neutrinos
  • FastJet 3.3.0, anti-ki jets with R=0.4
  • pTjet[500,550]GeV,|yjet|<1.7

There are 20 files in each dataset, each in compressed NumPy format. Files including charm and bottom jets have 'withbc' in their filename. There are two arrays in each file

  • X: (100000,M,4), exactly 50k quark and 50k gluon jets, randomly sorted, where M is the max multiplicity of the jets in that file (other jets have been padded with zero-particles), and the features of each particle are its pt, rapidity, azimuthal angle, and pdgid.
  • y: (100000,), an array of labels for the jets where gluon is 0 and quark is 1.

If you use this dataset, please cite this Zenodo record as well as the corresponding paper:

  • P. T. Komiske, E. M. Metodiev, J. Thaler, Energy Flow Networks: Deep Sets for Particle Jets, JHEP 01 (2019) 121, arXiv:1810.05165.

For the corresponding dataset of Herwig jets, see this Zenodo record. The datasets can be downloaded and read into python automatically using the EnergyFlow Python package.

Changes:

  • v1 - Added files with b and c quark jets.

Files

Files (4.3 GB)

Name Size Download all
md5:f5d052f10a79c6e8b9382637aca0ef52
106.7 MB Download
md5:f6a1081c76a47386bc11abcf0e499552
106.5 MB Download
md5:4b424b553e1e7f852e47ea9904bc2dcf
106.5 MB Download
md5:ccd29c9d1abb34dd7cfb48cfc57a9695
106.6 MB Download
md5:1ed1f6f19fb8439c9811dced41d5127d
106.7 MB Download
md5:af45818c361e11ca9b3adaba30db06ad
106.8 MB Download
md5:488ced3ea409d7e2b196da67f7d182ec
106.6 MB Download
md5:c5e083019de6cd6a0ef12bcec1ea566b
106.7 MB Download
md5:48605d55edff665f0c7d2f800b5a622e
106.7 MB Download
md5:8fd47760957b5fd9adec9048b50cd1a9
106.5 MB Download
md5:d43d611484b55391e891ba31c605f792
106.6 MB Download
md5:6753508e34014cc69714a01fca20ec38
106.8 MB Download
md5:2628367c57ba598f4473c870d1381041
106.5 MB Download
md5:dd3ad998b0a1bd9acea2ecf029a8a921
106.4 MB Download
md5:a56d6bb98361b55382aa8c06225e05d8
106.6 MB Download
md5:266c688e9e6ff1cd20840692d45eaaf8
106.6 MB Download
md5:95a9f7e555fb7b1073967056b9030b11
106.7 MB Download
md5:4ae72aaabe121bd489532c99a6bdde95
106.7 MB Download
md5:a2b80bd4199468fde4f302d346a8c9d8
106.8 MB Download
md5:1157cbace488c70c9dcfc250f3345b06
106.6 MB Download
md5:e9ac4044a07f56a919a96e2b30c15fed
106.8 MB Download
md5:5e0c0a08c5de47b190b514ce49ff4e94
106.9 MB Download
md5:bd5871239ddadcf080e62ffea07bb122
106.7 MB Download
md5:d7731f5abdf7d3e0c17eca846c25eff3
106.9 MB Download
md5:68514a76032dddb3b9cfd38654a4d433
107.1 MB Download
md5:d3dca7cb617c66e6f58ea248a10b5ccb
106.8 MB Download
md5:625a2d19e9b3ac6907362be3cefc404c
107.1 MB Download
md5:dae5923aba89ad393e1c59c63f2552e2
106.7 MB Download
md5:c611ace22f23518ae20d9e828fb5d0bc
107.1 MB Download
md5:821cff3746d2fa07ad1b9feb056dd88b
106.7 MB Download
md5:5c4775a99d18ac713360d9bbc43bfb43
107.0 MB Download
md5:5fd9bcfa8baafb6b3f6efb5114420976
106.7 MB Download
md5:7c4209b14f778bb6c8cb6833a3d47854
106.7 MB Download
md5:cabbd75d4313e07bf8cd8e3479e06c18
106.8 MB Download
md5:87e793e74e5e665e40c1ece764952934
107.0 MB Download
md5:fd0ff359e1e64023b1c1f05e854c7180
106.9 MB Download
md5:fed4dfe45618598c853f8d9d24a40afd
106.9 MB Download
md5:4220bee4b081850e41b3462c06538bda
107.0 MB Download
md5:a7d76ec2ab2ef6d5777de5574e289c26
106.7 MB Download
md5:40b9d803d1579ef77d6eda733e385e22
107.1 MB Download

Additional details

Related works

Is supplement to
arXiv:1810.05165 (arXiv)

References

  • P. T. Komiske, E. M. Metodiev, J. Thaler, Energy Flow Networks: Deep Sets for Particle Jets, JHEP 01 (2019) 121, arXiv:1810.05165.
  • P. T. Komiske, E. M. Metodiev, EnergyFlow, https://energyflow.network.