AN INVESTIGATION OF THE STRUCTURAL STRENGTH OF TRANSTIBIAL SOCKETS FABRICATED USING CONVENTIONAL METHODS AND RAPID PROTOTYPING TECHNIQUES
- 1. Barber Prosthetics Clinic, Vancouver, British Colombia, Canada.
- 2. Biomedical Engineering Department, Universidad Iberoamericana, Ciudad de Mexico, Mexico.
- 3. MAKE + Applied Research, Centre for Applied Research & Innovation (CARI), Burnaby, British Columbia, Canada.
Description
Abstract
BACKGROUND: Rapid Prototyping is becoming an accessible manufacturing method but before clinical adoption can occur, the safety of treatments needs to be established. Previous studies have evaluated the static strength of traditional sockets using ultimate strength testing protocols outlined by the International Organization for Standardization (ISO).
OBJECTIVE: To carry out a pilot test in which 3D printed sockets will be compared to traditionally fabricated sockets, by applying a static ultimate strength test.
METHODOLOGY: 36 sockets were made from a mold of a transtibial socket shape,18 for cushion liners with a distal socket attachment block and 18 for locking liners with a distal 4-hole pattern. Of the 18 sockets, 6 were thermoplastic, 6 laminated composites & 6 3D printed Polylactic Acid. Sockets were aligned in standard bench alignment and placed in a testing jig that applied forces simulating individuals of different weight putting force through the socket both early and late in the stance phase. Ultimate strength tests were conducted in these conditions. If a setup passed the ultimate strength test, load was applied until failure.
FINDINGS: All sockets made for cushion liners passed the strength tests, however failure levels and methods varied. For early stance, thermoplastic sockets yielded, laminated sockets cracked posteriorly, and 3D printed socket broke circumferen-tially. For late stance, 2/3 of the sockets failed at the pylon. Sockets made for locking liners passed the ultimate strength tests early in stance phase, however, none of the sockets passed for forces late in stance phase, all broke around the lock mechanism.
CONCLUSION: Thermoplastic, laminated and 3D printed sockets made for cushion liners passed the ultimate strength test protocol outlined by the ISO for forces applied statically in gait. This provides initial evidence that 3D printed sockets are statically safe to use on patients and quantifies the static strength of laminated and thermoplastic sockets. However, all set-ups of sockets made for locking liners failed at terminal stance. While further work is needed, this suggests that the distal reinforcement for thermoplastic, laminated and 3D printed sockets with distal cylindrical locks may need to be reconsidered.
Article PDF Link: https://jps.library.utoronto.ca/index.php/cpoj/article/view/31008/24937
LAYMAN’S ABSTRACT
3D printing is a new manufacturing method that could be used to make prosthetic sockets (the part of the prosthesis connected to the individual). However, very little is known about the strength of 3D printed sockets and if they are safe to use. As Prosthetists are responsible for providing patients with safe treatments, the strength of 3D printed sockets needs to be established before they can be used in clinical practice. The strength of sockets made using current manufacturing methods was compared to those made using 3D printing. Strength was tested using the static portion of the ISO standard most applicable for this situation which outlines the forces a socket must take at 2 points in walking–when the foot is placed on the ground (early stance) and when the foot pushed off the ground (late stance). Sockets made for two prosthetic designs (cushion and locking) were tested to determine if one is safer than the other. All sockets made for cushion liners passed the standard for forces applied statically. However, different materials failed in different ways. At early stance, thermoplastic sockets yielded, laminated composite sockets cracked and 3D printed sockets broke circumferentially. At late stance other components failed 2/3 of the time before the sockets were affected. This provides initial evidence that sockets made for cushion liners are statically safe to use on patients. Sockets made for locking liners failed around the end, showing that 3D printing should not be used to create sockets with the design tested in this study.
How to Cite: Pousett B, Lizcano A, Raschke S.U. An investigation of the structural strength of transtibial sockets fabricated using conventional methods and rapid prototyping techniques. Canadian Prosthetics & Orthotics Journal. 2019; Volume2, Issue1, No.2. DOI: https://doi.org/10.33137/cpoj.v2i1.31008
Files
An Investigation of the Structural Strength of Transtibial Sockets Fabricated Using Conventional Methods and Rapid Prototyping Techniques.pdf
Files
(684.2 kB)
Name | Size | Download all |
---|---|---|
md5:9983b81288d000b97be13e65d00ddc7f
|
684.2 kB | Preview Download |